ﬁ datenschutz-maximum

Version 13.12.2019 10:13, Seite 1/ 4

Weather microservice

A microservice for a Chatbot developed at the Beuth University of Applied Sciences Berlin

Table of content

1. Weather microservice
2. Table of content
3. Getting Started
a. Prerequisites
b. Cloning
c. Installing
4. Overview
a. Structure
b. Functionalities
[. The scripts-folder
[l. The services-folder
A. generateResponse.js
B. weatherService.js
C. fiveDayWeatherService.js
The routes-folder
Further Development
Further Reading
Built With
Versioning
Authors

wooNoU W

Getting Started

Prerequisites

- node.js
- express.js

Cloning

Get the source code by cloning its repository via https: weather_microservice

Installing

After cloning the repository, you will need to make sure that you have node and
npm installed on your working system. To check if you already have node installed,

https://wiki.ziemers.de/wiki/software/beuthbot/weather-service?rev=1576228408

Gedruckt 03.11.2025 22:43


https://nodejs.org/en/
https://expressjs.com/
https://github.com/Onkilchen/weather_microservice.git

Weather microservice

try

node —version

Same for checking if npm is installed, just with npm instead of the node command
npm —version

If you don't have node or npm installed, download the Softare via the links provided
in Prerequisites or search for them via your preferred search engine.

After that install all necessesary dependencies
npm install

Now you can start the local development server to play around with the APl and
make your calls

npm run dev
This will fire up a development server that listens on port 8000.

If you direct your browser to http://localhost:8000/weather, you will get the weather
forecast for the current day for Berlin.

Overview

The weather microservice is basically a Node-Express-Backend. Incoming requests
are checked and specifically handled. It can give you a general forecast for the next
five days or a detailed forecast for the current day.

Structure

The microservice consists of four folders containing several scripts, which are
designated to perform certain tasks. We have the *scripts*-folder containing scripts,
that will be called by cron-jobs mainly for caching purposes. Then we have the
*services*-folder containing files, that consist of functions useful to process
incoming requests from the chatbot and to generate a formatted answer-string,
that contains the weather forecast for Berlin. The *routes*-folder consists of all the
routes, that can be addressed. In the next chapters we will get into more details
about the scripts and their functions.

Functionalities

On request, this microservice makes calls to the OpenWeatherMap API. The
received data is processed by services that return a nicely formatted string
containing the weather forecast for Berlin. Mainly this service was built throughout
the Masterprojekt module that is a mandatory part of the media informatics master

Seite 2 /4


https://openweathermap.org/api

Weather microservice

course of the Beuth University for Applied Sciences.

The scripts-folder

This folder contains two scripts, that will be called by a cron job multiple times a
day, since we can only do a maximum of 60 requests to the API per day.
getWeather. js makes a request to the OpenWeatherMap APl and caches the
answer. After that writeResponseFile. json is called and generates a pretty
formatted answer-string. Now everytime a User wants to know the current weather
forecast, we can just read it out of the cached data and don't need to call the API.

The services-folder

This folder consists of several services, that perform specific tasks for the
microservice.

generateResponse.js

Creates a nicely formatted string from a weather-)JSON-object and caches it.
weatherService.js

Makes a request to the OpenWeatherMap-API to get the current weather forecast
and stores the response.

fiveDayWeatherService.js

If a weather forecast for the next days is requested, than this script requests the
necessary data from the OpenWeatherMap-API and stores its response.

The routes-folder

This folder contains all the routes, that can be addressed on this server. The
index.js manages all the routes. We've only got two routes in our project. The
/swagger-route leads you to the swagger documentation of this project. The
/weather-route will be called by another component of the Beuthbot. It expects a
message object containing the necessary details for this service. It then calls all the
functions needed to perform requests and generates an answer, which is finally
send back as a response to the Chatbot.

Further Development

This is still a work in progress, so functionalities and structure might still change
during development

Seite 3/4

https://ds-maximum.de


https://openweathermap.org/api

Weather microservice

Further Reading

- OpenMensa API

Built With

- Node.js
- Express.js
- Axios

Versioning

We use SemVerfor versioning. For the versions available, see the tags on this
repository.

Authors

- Tolga Karaoglu
- Steven Sobkowski

See also the list of contributors who participated in this project.

Nutzungshinweis: Auf dieses vorliegende Schulungs- oder Beratungsdokument
(ggf.) erlangt der Mandant vertragsgemaf ein nicht ausschlieRliches,
dauerhaftes, unbeschranktes, unwiderrufliches wund nicht G{bertragbares
Nutzungsrecht. Eine hieriber hinausgehende, nicht zuvor durch datenschutz-
maximum bewilligte Nutzung ist verboten und wird urheberrechtlich verfolgt.

Seite 4 /4


https://doc.openmensa.org/api/v2/
https://nodejs.org/en/
https://expressjs.com/
https://www.npmjs.com/package/axios
http://semver.org/
https://github.com/%3Cyou%3E/%3Cyour-repo%3E/tags
https://github.com/%3Cyou%3E/%3Cyour-repo%3E/tags
https://wiki.ziemers.de/https/github.com/you/your-repo/contributors

	Weather microservice
	Table of content
	Getting Started
	Prerequisites
	Cloning
	Installing

	Overview
	Structure
	Functionalities
	The scripts-folder
	The services-folder
	The routes-folder


	Further Development
	Further Reading
	Built With
	Versioning
	Authors


