ﬁ datenschutz-maximum Version 10.12.2019 19:19, Seite 1/ 2

Software Architecture

Table of content

1. Table of content
2. Overview
3. Basic Structure
a. Bot
b. Gateway
c. Registry
d. Service
4. API

Overview

BeuthBot consists of many interwoven Microservices. Evey Microservice uses our basic API to
communicate with other Microservices. This approach enables us to change parts of the system
easily at any time or to introduce new Microservices, all they need to do is to implement our
API.

Basic Structure

Our application is basically composed of the following four components.
Bot « Gateway « Registry & Service

Following diagram shows that in more detail.
I[structure](../assets/structure-without-notes.png)

A user can write the Bot to request informations, the meaning of the message is extracted and
a fitting Microservice is choosen to retrieve the necessary data. A response is build from that
data and distributed back up to the bot which answers the users request.

following sequence diagram further illustrates that.

I[flow](../assets/flow.png)

Bot

This is an abstraction for the available chatbots, e.g. a Bot for Telegram and another Bot for
WhatsApp.

The user interacts with this Microservice, here she can request information and gets answers
from BeuthBot.

https://wiki.ziemers.de/wiki/software/beuthbot/software-architecture?rev=1576001980 Gedruckt 04.11.2025 08:20



Software Architecture

Gateway

The Gateway is the centerpiece of BeuthBot one could say.
The Bot notifies the Gateway with the message it got from the user.

The Gateway then uses NLP (Natural Language Processing) Microservices to get the meaning
and intention of the user. Here we try to extract what the user wants from _BeuthBot _, to notify
the right service and present a fitting answer to our user.

Registry

After obtaining the intention of our user, the Gateway notifies the Registry, to get the
information the user requested.

The Registry distributes the request to the correct Service, that takes care of retrieving the right
informations.

Service

Service is an abstraction for the implemented Microservices that retrieve the necessary data we
need to answer users requests. E.g. the MensaService is a Microservice that can give
informations about the current menu, filtered by a number of parameters, e.g. a vegan user.

API

Because of the complexity of the single Microservices, every single Microservice implements its
own, distinct, API.

But to answer a users request we use a unified, comprehensive API. Its basic idea is to pass a
Response-Object trough the individual Microservices, which consists of the initial request, an
answer as a response to the users request and informations about the user.

Following class diagram further illustrates that:

I[flow](../assets/response-request-api.png)

Nutzungshinweis: Auf dieses vorliegende Schulungs- oder Beratungsdokument (ggf.) erlangt
der Mandant vertragsgemaR ein nicht ausschlieBliches, dauerhaftes, unbeschranktes,
unwiderrufliches und nicht Ubertragbares Nutzungsrecht. Eine hieriber hinausgehende, nicht
zuvor durch datenschutz-maximum bewilligte Nutzung ist verboten und wird urheberrechtlich
verfolgt.

Seite 2 /2



	[Software Architecture]
	Software Architecture
	Table of content
	Overview
	Basic Structure
	Bot
	Gateway
	Registry
	Service

	API



