
 datenschutz-maximum Version 10.12.2019 19:07, Seite 1 / 2

https://wiki.ziemers.de/wiki/software/beuthbot/software-architecture?rev=1576001277 Gedruckt 24.10.2025 08:55

Software Architecture

Table of Contents

[Table of Contents](#table-of-contents)1.
[Overview](#overview)2.
[Basic Structure](#basic-structure)3.

[Bot](#bot)a.
[Gateway](#gateway)b.
[Registry](#registry)c.
[Service](#service)d.

[API](#api)4.

Overview

BeuthBot consists of many interwoven Microservices. Evey Microservice uses our basic API to
communicate with other Microservices. This approach enables us to change parts of the system
easily at any time or to introduce new Microservices, all they need to do is to implement our
API.

Basic Structure

Our application is basically composed of the following four components.

Bot ⇔ Gateway ⇔ Registry ⇔ Service

Following diagram shows that in more detail.

![structure](../assets/structure-without-notes.png)

A user can write the _Bot_ to request informations, the meaning of the message is extracted
and a fitting _Microservice_ is choosen to retrieve the necessary data. A response is build from
that data and distributed back up to the bot which answers the users request.

following sequence diagram further illustrates that.

![flow](../assets/flow.png)

Bot

This is an abstraction for the available chatbots, e.g. a _Bot_ for _Telegram_ and another _Bot_
for _WhatsApp_.

The user interacts with this _Microservice_, here she can request information and gets answers
from _BeuthBot_.

Software Architecture

Seite 2 / 2

Gateway

The _Gateway_ is the centerpiece of _BeuthBot_ one could say.

The _Bot_ notifies the _Gateway_ with the message it got from the user.

The _Gateway_ then uses NLP (Natural Language Processing) _Microservices_ to get the
meaning and intention of the user. Here we try to extract what the user wants from _BeuthBot_,
to notify the right service and present a fitting answer to our user.

Registry

After obtaining the intention of our user, the _Gateway_ notifies the _Registry_, to get the
information the user requested.

The Registry distributes the request to the correct _Service_, that takes care of retrieving the
right informations.

Service

Service is an abstraction for the implemented _Microservices_ that retrieve the necessary
data we need to answer users requests. E.g. the _MensaService_ is a _Microservice_ that can
give informations about the current menu, filtered by a number of parameters, e.g. a vegan
user.

API

Because of the complexity of the single _Microservices_, every single _Microservice_
implements its own, distinct, API.

But to answer a users request we use a unified, comprehensive API. Its basic idea is to pass a
Response-Object trough the individual _Microservices_, which consists of the initial request,
an answer as a response to the users request and informations about the user.

Following class diagram further illustrates that:

![flow](../assets/response-request-api.png)

Nutzungshinweis: Auf dieses vorliegende Schulungs- oder Beratungsdokument (ggf.) erlangt
der Mandant vertragsgemäß ein nicht ausschließliches, dauerhaftes, unbeschränktes,
unwiderrufliches und nicht übertragbares Nutzungsrecht. Eine hierüber hinausgehende, nicht
zuvor durch datenschutz-maximum bewilligte Nutzung ist verboten und wird urheberrechtlich
verfolgt.

	[Software Architecture]
	Software Architecture
	Table of Contents
	Overview
	Basic Structure
	Bot
	Gateway
	Registry
	Service

	API

