
 datenschutz-maximum Version 10.12.2019 19:07, Seite 1 / 2

https://wiki.ziemers.de/wiki/software/beuthbot/software-architecture?rev=1576001222 Gedruckt 04.11.2025 18:37

Software Architecture

Table of Contents

- [Table of Contents](#table-of-contents) - [Overview](#overview) - [Basic Structure](#basic-
structure)

[Bot](#bot)1.
[Gateway](#gateway)2.
[Registry](#registry)3.
[Service](#service)4.

- [API](#api)

Overview

BeuthBot consists of many interwoven Microservices. Evey Microservice uses our basic API to
communicate with other Microservices. This approach enables us to change parts of the system easily
at any time or to introduce new Microservices, all they need to do is to implement our API.

Basic Structure

Our application is basically composed of the following four components.

Bot ⇔ Gateway ⇔ Registry ⇔ Service

Following diagram shows that in more detail.

![structure](../assets/structure-without-notes.png)

A user can write the _Bot_ to request informations, the meaning of the message is extracted and a
fitting _Microservice_ is choosen to retrieve the necessary data. A response is build from that data and
distributed back up to the bot which answers the users request.

following sequence diagram further illustrates that.

![flow](../assets/flow.png)

Bot

This is an abstraction for the available chatbots, e.g. a _Bot_ for _Telegram_ and another _Bot_ for
_WhatsApp_.

The user interacts with this _Microservice_, here she can request information and gets answers from
_BeuthBot_.



Software Architecture

Seite 2 / 2

Gateway

The _Gateway_ is the centerpiece of _BeuthBot_ one could say.

The _Bot_ notifies the _Gateway_ with the message it got from the user.

The _Gateway_ then uses NLP (Natural Language Processing) _Microservices_ to get the meaning and
intention of the user. Here we try to extract what the user wants from _BeuthBot_, to notify the right
service and present a fitting answer to our user.

Registry

After obtaining the intention of our user, the _Gateway_ notifies the _Registry_, to get the information
the user requested.

The Registry distributes the request to the correct _Service_, that takes care of retrieving the right
informations.

Service

_Service_ is an abstraction for the implemented _Microservices_ that retrieve the necessary data we
need to answer users requests. E.g. the _MensaService_ is a _Microservice_ that can give informations
about the current menu, filtered by a number of parameters, e.g. a vegan user.

API

Because of the complexity of the single _Microservices_, every single _Microservice_ implements its
own, distinct, API.

But to answer a users request we use a unified, comprehensive API. Its basic idea is to pass a
_Response_-Object trough the individual _Microservices_, which consists of the initial request, an
answer as a response to the users request and informations about the user.

Following class diagram further illustrates that:

![flow](../assets/response-request-api.png)

Nutzungshinweis: Auf dieses vorliegende Schulungs- oder Beratungsdokument (ggf.) erlangt der
Mandant vertragsgemäß ein nicht ausschließliches, dauerhaftes, unbeschränktes, unwiderrufliches
und  nicht  übertragbares  Nutzungsrecht.  Eine  hierüber  hinausgehende,  nicht  zuvor  durch
datenschutz-maximum  bewilligte  Nutzung  ist  verboten  und  wird  urheberrechtlich  verfolgt.


	[Software Architecture]
	Software Architecture
	Table of Contents
	Overview
	Basic Structure
	Bot
	Gateway
	Registry
	Service

	API



