E datenschutz-maximum Version 10.12.2019 19:07, Seite 1/ 2

Software Architecture

Table of Contents
- [Table of Contents](#table-of-contents) - [Overview](#overview) - [Basic Structure](#basic-
structure)

1. [Bot](#bot)

2. [Gateway](#gateway)
3. [Registry](#registry)
4. [Service](#service)

- [API])(#api)

Overview

BeuthBot consists of many interwoven Microservices. Evey Microservice uses our basic API to
communicate with other Microservices. This approach enables us to change parts of the system easily
at any time or to introduce new Microservices, all they need to do is to implement our API.

Basic Structure

Our application is basically composed of the following four components.
Bot & Gateway & Registry « Service

Following diagram shows that in more detail.
I[structure](../assets/structure-without-notes.png)

A user can write the Bot_ to request informations, the meaning of the message is extracted and a
fitting _Microservice_is choosen to retrieve the necessary data. A response is build from that data and
distributed back up to the bot which answers the users request.

following sequence diagram further illustrates that.

I[flow](../assets/flow.png)

Bot

This is an abstraction for the available chatbots, e.g. a _Bot_for Telegram_and another Bot for
_WhatsApp_.

The user interacts with this Microservice_, here she can request information and gets answers from
_BeuthBot _.

https://wiki.ziemers.de/wiki/software/beuthbot/software-architecture?rev=1576001222 Gedruckt 04.11.2025 18:37



Software Architecture

Gateway

The _Gateway_is the centerpiece of BeuthBot_ one could say.
The _Bot_ notifies the _Gateway_ with the message it got from the user.

The Gateway_then uses NLP (Natural Language Processing) Microservices_to get the meaning and
intention of the user. Here we try to extract what the user wants from BeuthBot_, to notify the right
service and present a fitting answer to our user.

Registry

After obtaining the intention of our user, the _Gateway_ notifies the _Registry_, to get the information
the user requested.

The Registry distributes the request to the correct Service_, that takes care of retrieving the right
informations.

Service

_Service_ is an abstraction for the implemented _Microservices_ that retrieve the necessary data we
need to answer users requests. E.g. the MensaService_is a Microservice_that can give informations
about the current menu, filtered by a number of parameters, e.g. a vegan user.

API
Because of the complexity of the single _Microservices_, every single _Microservice_implements its

own, distinct, API.

But to answer a users request we use a unified, comprehensive API. Its basic idea is to pass a
_Response_-Object trough the individual _Microservices_, which consists of the initial request, an
answer as a response to the users request and informations about the user.

Following class diagram further illustrates that:

I[flow](../assets/response-request-api.png)

Nutzungshinweis: Auf dieses vorliegende Schulungs- oder Beratungsdokument (ggf.) erlangt der
Mandant vertragsgemaR ein nicht ausschlielRliches, dauerhaftes, unbeschranktes, unwiderrufliches
und nicht Ubertragbares Nutzungsrecht. Eine hieriber hinausgehende, nicht zuvor durch
datenschutz-maximum bewilligte Nutzung ist verboten und wird urheberrechtlich verfolgt.

Seite 2 /2



	[Software Architecture]
	Software Architecture
	Table of Contents
	Overview
	Basic Structure
	Bot
	Gateway
	Registry
	Service

	API



