E datenschutz-maximum Version 22.07.2020 18:32, Seite 1/ 3

cache

Motivation

Der Cache soll vorrangig die Microservices entlasten, indem er die Response zwischenspeichert und
der Registry fur eine gewisse Zeit zur Verfugung stellt. Insbesondere der Service Weather ist davon
betroffen, da dieser eine APl von OpenWeatherMap nutzt, welches pro Tag 4000 Wettervorhersagen
treffen kann, sonst wird dieser Kostenpflichtig bzw. kann dann keine Requests mehr entgegen
nehmen.

Free Startup Developer Professional Enterprise
40 USD / month 180 USD / month 470 USD / month 2.000 USD / month

60 calls/minute 600 calls/minute 3,000 30,000 calls/minute 200,000
1,000,000 10,000,000 calls/minute 1,000,000,000 calls/minute
calls/month calls/month 100,000,000 calls/month 5,000,000,000
calls/month calls/month

Current Weather Current Weather Current Weather Current Weather Current Weather
Minute Forecast 1 Minute Forecast 1 Minute Forecast 1 Minute Forecast 1 Minute forecast 1
hourx hours % hour hour hour
Hourly Forecast 2 Hourly Forecast 2 Hourly Forecast 4 Hourly Forecast 4 Hourly Forecast 4
days* days* x days days days
Daily Forecast 7 Daily Forecast 16 Daily Forecast 16 Daily Forecast 16 Daily Forecast 16
days* days days days days
Historical Historical Historical weather Historical weather 5 Historical weather 5
weather 5 days* weather 5 5 days days days
Climatic Forecast 30 days* % Climatic Forecast Climatic Forecast 30 Climatic Forecast 30
days Climatic Forecast 30 30 days days days
Bulk Download days Bulk Download Bulk Download Bulk Download

Bulk Download
Basic weather Basic weather Advanced weather Advanced weather Advanced weather
maps maps maps maps maps
Historical maps Historical maps Historical maps Historical maps Historical maps

Weather triggers Weather triggers Weather triggers Weather triggers Weather triggers
Weather widgets Weather widgets Weather widgets Weather widgets Weather widgets
Uptime 95% Uptime 95% Uptime 99.5% Uptime 99.5% Uptime 99.9%

* - 1,000 API calls per day by using One Call API
%% - 2,000 API calls per day by using One Call API

Requirements

Die Registry soll Requests von dem Deconcentrator entgegennehmen und Uberprifen, ob diese
Request innerhalb einer fest definierten Zeit bereits eine Response erhalten hat. Ist dies der Fall guckt
die Registry in den Cache, um sich die dort Zwischengespeicherte Response zu holen und diese an

https://wiki.ziemers.de/wiki/software/beuthbot/registry/cache?rev=1595435526 Gedruckt 01.02.2026 09:07

https://openweathermap.org/price
https://openweathermap.org/api/weather-map-2
https://openweathermap.org/api/one-call-api
https://openweathermap.org/api/one-call-api
https://openweathermap.org/api/one-call-api
https://openweathermap.org/api/one-call-api
https://openweathermap.org/api/one-call-api
https://openweathermap.org/api/one-call-api
https://openweathermap.org/api/one-call-api#history
https://openweathermap.org/api/one-call-api#history
https://openweathermap.org/api/forecast30
https://openweathermap.org/api/forecast30
https://openweathermap.org/bulk
https://openweathermap.org/api/weathermaps
https://openweathermap.org/api/weathermaps
https://openweathermap.org/api/weather-map-2
https://openweathermap.org/api/weather-map-2
https://openweathermap.org/api/weather-map-2
https://openweathermap.org/triggers
https://openweathermap.org/widgets-constructor

cache

den Sender der Request zu leiten. Dabei “ersetzt” der Cache den angesprochenen Microservice. Ist
dies allerdings nicht der Fall wendet sich die Registry weiter an den angesprochenen Microservice und
speichert dessen Response in den Cache.

Functional

e /CAF100/ The system must check if the requested resource is available in the cache before
relaying the request to a microservice.
e /CAF100/ The system must place the response of a microservice in the cache.

e /CAF200/ The cache must offer an option to save a response of a microservice.
e /CAF201/ The cache must offer an option to retrieve a saved response.
e /CAF202/ The cache must automatically delete a saved response if the given timeout has been

exceeded.
Non Functional

e /CANF100/ The system must answer faster with a cached response than if a request is relayed
to a microservice.

e /CANF200/ The cache must save at least 1000 Responses.
e /CANF201/ The cache must answer in at least 5ms.

User Stories

e /CAUS100/ Als Betreiber mochte ich Anfragen die das selbe Ergebnis erzeugen abfangen und
damit die Microservices entlasten.

e /CAUS101/ Als Betreiber mochte ich die Anfragen an die verschiedenen APIs reduzieren um
nicht in ein teureres Preispaket zu fallen.

Use Cases
Technologies

FUr Node.js existieren mehrere Caching Losungen. Bei den ersten recherchen fielen die npm packages
“memory-cache” und “node-cache” auf. Da “memory-cache” seit drei Jahren kein Update bekommen
hat, haben wir uns letzten endes fur “node-cache” entschieden.

“node-cache” ist eine simple Caching Lésung, die nach dem Key-Value prinzip funktioniert. Der
Funktionsumfang besteht dabei aus den Methoden “set”, “get” und “delete”, wobei die Methode “set”
einem zusatzlich erlaubt noch einen Timeout (“ttl” bzw. “time to live” genannt) zu Ubergeben. Ist der
Timeout Uberschritten, wird der Eintrag automatisch aus dem Cache geldscht. Der Nachteil dieser
Losung ist, dass nur eine Millionen eintrage pro Cache Instanz eingetragen werden kdnnen. Da aber
gleich viel in den Cache eingetragen wird, wie die Anzahl angebotener Funktionen aller Microservices,
wird dieser Nachteil nicht eintreffen.

Seite 2/ 3

cache

Integration

Der Cache wird wie schon in Technologies beschrieben in Node.js verwendet. Spezifisch wird der
Cache dem ,reqistry” Server hinzugefugt.

Das Resultat (veranschaulicht im folgenden UML diagram) besteht darin, dass registry versucht die
angefragte Ressource aus dem Cache zu holen und gegebenfalls eine Anfrage an den entsprechenden
Microservice zu stellen, falls die Ressource nicht im Cache vorhanden ist.

registry internal

tew reqgistr 8 microservi
gateway egistry cache croservices
|

——— |

Intention Requegt _ |

|
|
> |
|
|

|
|
|
|
|
|
|
|
|
|
alt) [requested resource is not in cache]
| |
|

Service Request !

Final Response

[
|
|
|
X :
- cache
gateway registry 8 microservices

Resultate

Die momentane Implementierung ist wie zuvor beschrieben umgesetzt. Der einzige Unterschied
besteht darin, dass die Microservices die Méglichkeit besitzen, einen ttl mitzuschicken. Wird kein ttl
vom Microservice mitgeschickt, so wird ein Standard ttl (momentan 30 Minuten) verwendet.

Nutzungshinweis: Auf dieses vorliegende Schulungs- oder Beratungsdokument (ggf.) erlangt der
Mandant vertragsgemalS ein nicht ausschliel8liches, dauerhaftes, unbeschranktes, unwiderrufliches
und nicht Ubertragbares Nutzungsrecht. Eine hieriber hinausgehende, nicht zuvor durch
datenschutz-maximum bewilligte Nutzung ist verboten und wird urheberrechtlich verfolgt.

Seite 3/3 https://ds-maximum.de

	[cache]
	cache
	Motivation
	Requirements
	Functional
	Non Functional

	User Stories
	Use Cases
	Technologies
	Integration
	Resultate

