
 datenschutz-maximum Version 22.07.2020 18:32, Seite 1 / 3

https://wiki.ziemers.de/wiki/software/beuthbot/registry/cache?rev=1595435526 Gedruckt 01.02.2026 09:07

cache

Motivation

Der Cache soll vorrangig die Microservices entlasten, indem er die Response zwischenspeichert und
der Registry für eine gewisse Zeit zur Verfügung stellt. Insbesondere der Service Weather ist davon
betroffen, da dieser eine API von OpenWeatherMap nutzt, welches pro Tag 4000 Wettervorhersagen
treffen kann, sonst wird dieser Kostenpflichtig bzw. kann dann keine Requests mehr entgegen
nehmen.

Free Startup
40 USD / month

Developer
180 USD / month

Professional
470 USD / month

Enterprise
2.000 USD / month

60 calls/minute
1,000,000
calls/month

600 calls/minute
10,000,000
calls/month

3,000
calls/minute
100,000,000
calls/month

30,000 calls/minute
1,000,000,000
calls/month

200,000
calls/minute
5,000,000,000
calls/month

Current Weather
Minute Forecast 1
hour∗
Hourly Forecast 2
days∗
Daily Forecast 7
days∗
Historical
weather 5 days∗
Climatic Forecast 30
days
Bulk Download

Current Weather
Minute Forecast 1
hour∗∗
Hourly Forecast 2
days∗∗
Daily Forecast 16
days
Historical
weather 5
days∗∗
Climatic Forecast 30
days
Bulk Download

Current Weather
Minute Forecast 1
hour
Hourly Forecast 4
days
Daily Forecast 16
days
Historical weather
5 days
Climatic Forecast
30 days
Bulk Download

Current Weather
Minute Forecast 1
hour
Hourly Forecast 4
days
Daily Forecast 16
days
Historical weather 5
days
Climatic Forecast 30
days
Bulk Download

Current Weather
Minute forecast 1
hour
Hourly Forecast 4
days
Daily Forecast 16
days
Historical weather 5
days
Climatic Forecast 30
days
Bulk Download

Basic weather
maps
Historical maps

Basic weather
maps
Historical maps

Advanced weather
maps
Historical maps

Advanced weather
maps
Historical maps

Advanced weather
maps
Historical maps

Weather triggers Weather triggers Weather triggers Weather triggers Weather triggers

Weather widgets Weather widgets Weather widgets Weather widgets Weather widgets

Uptime 95% Uptime 95% Uptime 99.5% Uptime 99.5% Uptime 99.9%

∗ - 1,000 API calls per day by using One Call API
∗∗ - 2,000 API calls per day by using One Call API

Requirements

Die Registry soll Requests von dem Deconcentrator entgegennehmen und überprüfen, ob diese
Request innerhalb einer fest definierten Zeit bereits eine Response erhalten hat. Ist dies der Fall guckt
die Registry in den Cache, um sich die dort Zwischengespeicherte Response zu holen und diese an

https://openweathermap.org/price
https://openweathermap.org/api/weather-map-2
https://openweathermap.org/api/one-call-api
https://openweathermap.org/api/one-call-api
https://openweathermap.org/api/one-call-api
https://openweathermap.org/api/one-call-api
https://openweathermap.org/api/one-call-api
https://openweathermap.org/api/one-call-api
https://openweathermap.org/api/one-call-api#history
https://openweathermap.org/api/one-call-api#history
https://openweathermap.org/api/forecast30
https://openweathermap.org/api/forecast30
https://openweathermap.org/bulk
https://openweathermap.org/api/weathermaps
https://openweathermap.org/api/weathermaps
https://openweathermap.org/api/weather-map-2
https://openweathermap.org/api/weather-map-2
https://openweathermap.org/api/weather-map-2
https://openweathermap.org/triggers
https://openweathermap.org/widgets-constructor

cache

Seite 2 / 3

den Sender der Request zu leiten. Dabei “ersetzt” der Cache den angesprochenen Microservice. Ist
dies allerdings nicht der Fall wendet sich die Registry weiter an den angesprochenen Microservice und
speichert dessen Response in den Cache.

Functional

/CAF100/ The system must check if the requested resource is available in the cache before
relaying the request to a microservice.
/CAF100/ The system must place the response of a microservice in the cache.

/CAF200/ The cache must offer an option to save a response of a microservice.
/CAF201/ The cache must offer an option to retrieve a saved response.
/CAF202/ The cache must automatically delete a saved response if the given timeout has been
exceeded.

Non Functional

/CANF100/ The system must answer faster with a cached response than if a request is relayed
to a microservice.

/CANF200/ The cache must save at least 1000 Responses.
/CANF201/ The cache must answer in at least 5ms.

User Stories

/CAUS100/ Als Betreiber möchte ich Anfragen die das selbe Ergebnis erzeugen abfangen und
damit die Microservices entlasten.
/CAUS101/ Als Betreiber möchte ich die Anfragen an die verschiedenen APIs reduzieren um
nicht in ein teureres Preispaket zu fallen.

Use Cases

Technologies

Für Node.js existieren mehrere Caching Lösungen. Bei den ersten recherchen fielen die npm packages
“memory-cache” und “node-cache” auf. Da “memory-cache” seit drei Jahren kein Update bekommen
hat, haben wir uns letzten endes für “node-cache” entschieden.

“node-cache” ist eine simple Caching Lösung, die nach dem Key-Value prinzip funktioniert. Der
Funktionsumfang besteht dabei aus den Methoden “set”, “get” und “delete”, wobei die Methode “set”
einem zusätzlich erlaubt noch einen Timeout (“ttl” bzw. “time to live” genannt) zu übergeben. Ist der
Timeout überschritten, wird der Eintrag automatisch aus dem Cache gelöscht. Der Nachteil dieser
Lösung ist, dass nur eine Millionen einträge pro Cache Instanz eingetragen werden können. Da aber
gleich viel in den Cache eingetragen wird, wie die Anzahl angebotener Funktionen aller Microservices,
wird dieser Nachteil nicht eintreffen.

cache

Seite 3 / 3 https://ds-maximum.de

Integration

Der Cache wird wie schon in Technologies beschrieben in Node.js verwendet. Spezifisch wird der
Cache dem „registry“ Server hinzugefügt.

Das Resultat (veranschaulicht im folgenden UML diagram) besteht darin, dass registry versucht die
angefragte Ressource aus dem Cache zu holen und gegebenfalls eine Anfrage an den entsprechenden
Microservice zu stellen, falls die Ressource nicht im Cache vorhanden ist.

registry internal

gateway

gateway

registry

registry

cache

cache

microservices

microservices

Intention Request

Cache Lookup

Cache Response

alt [requested resource is not in cache]

Service Request

Service Response

Cache Persist

Final Response

Resultate

Die momentane Implementierung ist wie zuvor beschrieben umgesetzt. Der einzige Unterschied
besteht darin, dass die Microservices die Möglichkeit besitzen, einen ttl mitzuschicken. Wird kein ttl
vom Microservice mitgeschickt, so wird ein Standard ttl (momentan 30 Minuten) verwendet.

Nutzungshinweis: Auf dieses vorliegende Schulungs- oder Beratungsdokument (ggf.) erlangt der
Mandant vertragsgemäß ein nicht ausschließliches, dauerhaftes, unbeschränktes, unwiderrufliches
und nicht übertragbares Nutzungsrecht. Eine hierüber hinausgehende, nicht zuvor durch
datenschutz-maximum bewilligte Nutzung ist verboten und wird urheberrechtlich verfolgt.

	[cache]
	cache
	Motivation
	Requirements
	Functional
	Non Functional

	User Stories
	Use Cases
	Technologies
	Integration
	Resultate

