
 datenschutz-maximum Version 09.06.2020 17:48, Seite 1 / 4

https://wiki.ziemers.de/wiki/software/beuthbot/registry/cache?rev=1591717710 Gedruckt 01.02.2026 09:07

cache

Motivation

Der Cache soll vorrangig die Microservices entlasten, indem er die Response zwischenspeichert und
der Registry für eine gewisse Zeit zur Verfügung stellt. Insbesondere der Service Weather ist davon
betroffen, da dieser eine API von OpenWeatherMap nutzt, welches pro Tag 4000 Wettervorhersagen
treffen kann, sonst wird dieser Kostenpflichtig bzw. kann dann keine Requests mehr entgegen
nehmen.

Free Startup
40 USD / month

Developer
180 USD / month

Professional
470 USD / month

Enterprise
2.000 USD / month

60 calls/minute
1,000,000
calls/month

600 calls/minute
10,000,000
calls/month

3,000
calls/minute
100,000,000
calls/month

30,000 calls/minute
1,000,000,000
calls/month

200,000
calls/minute
5,000,000,000
calls/month

Current Weather
Minute Forecast 1
hour∗
Hourly Forecast 2
days∗
Daily Forecast 7
days∗
Historical
weather 5 days∗
Climatic Forecast 30
days
Bulk Download

Current Weather
Minute Forecast 1
hour∗∗
Hourly Forecast 2
days∗∗
Daily Forecast 16
days
Historical
weather 5
days∗∗
Climatic Forecast 30
days
Bulk Download

Current Weather
Minute Forecast 1
hour
Hourly Forecast 4
days
Daily Forecast 16
days
Historical weather
5 days
Climatic Forecast
30 days
Bulk Download

Current Weather
Minute Forecast 1
hour
Hourly Forecast 4
days
Daily Forecast 16
days
Historical weather 5
days
Climatic Forecast 30
days
Bulk Download

Current Weather
Minute forecast 1
hour
Hourly Forecast 4
days
Daily Forecast 16
days
Historical weather 5
days
Climatic Forecast 30
days
Bulk Download

Basic weather
maps
Historical maps

Basic weather
maps
Historical maps

Advanced weather
maps
Historical maps

Advanced weather
maps
Historical maps

Advanced weather
maps
Historical maps

Weather triggers Weather triggers Weather triggers Weather triggers Weather triggers

Weather widgets Weather widgets Weather widgets Weather widgets Weather widgets

Uptime 95% Uptime 95% Uptime 99.5% Uptime 99.5% Uptime 99.9%

∗ - 1,000 API calls per day by using One Call API
∗∗ - 2,000 API calls per day by using One Call API

Requirements

Die Registry soll Requests von dem Deconcentrator entgegennehmen und überprüfen, ob diese
Request innerhalb einer fest definierten Zeit bereits eine Response erhalten hat. Ist dies der Fall guckt
die Registry in den Cache, um sich die dort Zwischengespeicherte Response zu holen und diese an

https://openweathermap.org/price
https://openweathermap.org/api/weather-map-2
https://openweathermap.org/api/one-call-api
https://openweathermap.org/api/one-call-api
https://openweathermap.org/api/one-call-api
https://openweathermap.org/api/one-call-api
https://openweathermap.org/api/one-call-api
https://openweathermap.org/api/one-call-api
https://openweathermap.org/api/one-call-api#history
https://openweathermap.org/api/one-call-api#history
https://openweathermap.org/api/forecast30
https://openweathermap.org/api/forecast30
https://openweathermap.org/bulk
https://openweathermap.org/api/weathermaps
https://openweathermap.org/api/weathermaps
https://openweathermap.org/api/weather-map-2
https://openweathermap.org/api/weather-map-2
https://openweathermap.org/api/weather-map-2
https://openweathermap.org/triggers
https://openweathermap.org/widgets-constructor

cache

Seite 2 / 4

den Sender der Request zu leiten. Dabei “ersetzt” der Cache den angesprochenen Microservice.

Functional

/CAF100/ The system must …
/CAF100/ The system must …
/CAF100/ The system must …
/CAF200/ The cache must …
/CAF200/ The cache must …
/CAF200/ The cache must …

Non Functional

/CANF100/ The system must …
/CANF100/ The system must …
/CANF100/ The system must …

/CANF200/ The cache must …
/CANF200/ The cache must …
/CANF200/ The cache must …

User Stories

/CAUS100/ Als Betreiber möchte ich Anfragen die das selbe Ergebnis erzeugen abfangen und
damit die Microservices entlasten.
/CAUS101/ Als Betreiber möchte ich die Anfragen an die verschiedenen APIs reduzieren um
nicht in ein teureres Preispaket zu fallen.

Use Cases (?)

Technologies

Für Node.js existieren mehrere Caching Lösungen. Bei den ersten recherchen fielen die npm packages
“memory-cache” und “node-cache” auf. Da “memory-cache” seit drei Jahren kein Update bekommen
hat, haben wir uns letzten endes für “node-cache” entschieden.

“node-cache” ist eine simple Caching Lösung, die nach dem Key-Value prinzip funktioniert. Der
Funktionsumfang besteht dabei aus den Methoden “set”, “get” und “delete”, wobei die Methode “set”
einem zusätzlich erlaubt noch einen Timeout (“ttl” bzw. “time to live” genannt) zu übergeben. Ist der
Timeout überschritten, wird der Eintrag automatisch aus dem Cache gelöscht. Der Nachteil dieser
Lösung ist, dass nur eine Millionen einträge pro Cache Instanz eingetragen werden können. Da aber
gleich viel in den Cache eingetragen wird, wie die Anzahl angebotener Funktionen aller Microservices,
wird dieser Nachteil nicht eintreffen.

cache

Seite 3 / 4 https://ds-maximum.de

Integration

An welcher Stelle wird der Cache in das System eingebaut? (Registry)

Wie wird sie eingebaut?

Wie sieht das Endprodukt aus?

registry internal

gateway

gateway

registry

registry

cache

cache

microservices

microservices

Intention Request

Cache Lookup

Cache Response

alt [requested resource is not in cache]

Service Request

Service Response

Cache Persist

Final Response

Abnahmekriterien

Was musst der Cache / die Registry können, damit wir das Projekt als erfolgreich definieren
können?

Resultierende Aufgaben

Was müssen wir also tun?

Auflistung der Tickets die entstehen…

Vielleicht lieber direkt bei GitHub

cache

Seite 4 / 4

Nutzungshinweis: Auf dieses vorliegende Schulungs- oder Beratungsdokument (ggf.) erlangt der
Mandant vertragsgemäß ein nicht ausschließliches, dauerhaftes, unbeschränktes, unwiderrufliches
und nicht übertragbares Nutzungsrecht. Eine hierüber hinausgehende, nicht zuvor durch
datenschutz-maximum bewilligte Nutzung ist verboten und wird urheberrechtlich verfolgt.

	[cache]
	cache
	Motivation
	Requirements
	Functional
	Non Functional

	User Stories
	Use Cases (?)
	Technologies
	Integration
	Abnahmekriterien
	Resultierende Aufgaben

