
 datenschutz-maximum Version 13.12.2019 11:40, Seite 1 / 6

https://wiki.ziemers.de/wiki/software/beuthbot/gateway?rev=1576233643 Gedruckt 13.06.2025 13:26

Gateway

The gateway itself is the core microservice of our application. It represents the top (first) layer in our
system architecture and has a direct bidirectional interface to Telegram. The main functionality of the
gateway is to receive and handle all incoming user requests. Once a user is interacting with our bot -
doesn't matter whether the user communicates via text or voice message - all requests are going to
be passed on to the gateway.

Table Of Content

Gateway1.
Table Of Content2.
Getting Started3.

Prerequisitesa.
Setupb.
Referencesc.

Overview4.
Structure5.
Functionalities6.

Variablesa.
API-Callb.
Microsoft Azure - Cognitive Services - Headersc.
Serverd.

Further Development7.
Further Reading8.
Built With9.
Versioning10.
Authors11.

Getting Started

The following sections will give an overview how the gateway was created. It is strongly
recommended to read Telegrams bot introduction for developers to get a better insight what we
are talking about in this context.

Every time a Telegram bot receives a message, the bot forwards this message in form of an API
call to a corresponding server that handles all incoming messages. Once this is done, the server
processes the request and a response will be generated that will go back to the user. In general
there are two ways to get notified about incoming messages:

1. Long polling
2. Webhooks

Within this project we are going to use webhooks.

https://telegram.org/
https://core.telegram.org/bots
https://telegram.org/

Gateway

Seite 2 / 6

Prerequisites

Since the gateway is built from scratch there are no specific requirements or dependencies.

[Appendum: We decided to establish the server using node.js. That's why an installation of node
and npm is necessary.]

Telegram Bot

As mentioned here our gateway is directly connected to the bot. Therefore the creation of a
Telegram bot is necassary before it comes to the actual implementation. For test purposes an
onw Telegram has been created as part of preparing the gateway implementation. It is
reachable via cbeuthbot on Telegram. The created bot does not have any kind dependecies to
the productive BeuthBot and is completely autonomous. This means that the system
architecture is intended to be as flexible as possible to enable a simple addition or removel of
different types of bots.

Set Up

Once a Telegram bot has been created and configured, we started to initialize a local project in
a first step. Therefore a project directory has been set up as well as a > npm init has been
executed in this directory. After this step a package.json has been created automatically. On
top of that, express, axios and body-parser have been installed via > npm install. In
this context express is our application server, axios is an HTTP client and body-parser
helps to parse the response body received from each request. As soon as these components
have been succesfully installed we created our actual gateway - first simply named index.js.

The content of this file was looking very rudimentary in the beginning. It simply repsents a
'Ping-Pong' service at this point. This means, if a user writes a message that includes e.g. the
word 'ping' our gateway creates a response with the word 'pong'. The answer will be sent back
to the user by using the chat-id. Additionally we established 3000 as our port for
communicating.

At this point we were able to run our server locally by typing in > node index.js. But a local
server implies that the bot cannot call an API. It is desperate need of a public domain name.
This means we have to deploy our application with ZEIT.

Once this is done we have to let telegram know that our bot has to talk to this url whenver it
receives any message in a last step. This get managed through cURL.

References

During the implementation of the gateway we used this manual as a kind of orientation.

https://nodejs.org/en/
https://telegram.org/
https://telegram.org/
https://telegram.org/
https://zeit.co/
https://www.sohamkamani.com/blog/2016/09/21/making-a-telegram-bot/

Gateway

Seite 3 / 6 https://ds-maximum.de

Overview

The gateway we built is able to receive incoming messages from our bot and also standardizes
(since there is no guarantee for uniform requests, all incoming messages are getting
standardized in a very first step) all requests. Once this is done, the gateway calls one or more
of our NLU interfaces to evaluate the message text. This is done via HTTP-POST and json. The
evaluation of our message (score determining) can be done separately or together with the text
analysis. E.g. when using Microsoft Azure Cognitive Services we transfer our
messages with all relevant parameters and as a result out HTTP-POST delivers the score,
entities, key words etc. in form of a json object. With this result we continue to call the API of
our „next“ microservice (in this case the registry) and pass on all relevant values.

Structure

To give a better overview of how the gateway is built up, the following class diagram has been
created:

Gateway - Class Diagram

StandardizationLayer_Bot

defaultMessage: Object
TextAudioFlag: Boolean
standardizeMessage(): void
getStandardizedMessage(): Message
getAudioMessage(): Object

Gateway

standardizedMessage: Message
evaluateScores(): void

LanguageProcessing

interpretMessage(): void
getInterpretedMessage(): Object
patternMessage(): void
getPatternedMessage(): Object

Registry

StandardizationLayer

This class diagram shows the structure around the gateway. Here it is important that there is a
StandardizationLayer beforehand, which standsardize the incoming messages. The gateway
then directs the message to an NLU service where we get the evaluated object back and
compare the scores. The best evaluated message is then forwarded to the registry.

Gateway

Seite 4 / 6

Functionalities

Variables

The defined variables are based on express, body-parser and axios:

var express = require('express')
var app = express()
var bodyParser = require('body-parser')
const axios = require('axios')

API-Call

Each time our bot is mesaged in the chat, the message will be passed on to the gateway. This is
mapped via cURL. All incoming messages use the route \message-in. If the message has no
content, the response is empty. The code for the described behaviour looks as follows:

app.post('/message-in', function(req, res) { // This is the route the
API will call
 const { message } = req.body
 if (!message || message.text.length < 1) { // In case a message
is not present, or if our message is empty, do nothing and return an
empty response
 return res.end()
 }

Microsoft Azure - Cognitive Services - Headers

Microsot Azure predetermines its specific header that should be used for HTTP-POST. The
header looks like this:

 const options = {
 headers: {
 'Host': 'northeurope.api.cognitive.microsoft.com',
 'Content-Type': 'application/json',
 'Ocp-Apim-Subscription-Key': '********************************'
 }
 }

HTTP-POST

This section of code shows a request to the Azure service and generates a response which is
sent directly to the bot. The code is shaded like this because Axios processes the messages
asyncronous and we have to ensure a response has already been received. The following code
snippet shows this more in detail:

Gateway

Seite 5 / 6 https://ds-maximum.de

axios.post('https://northeurope.api.cognitive.microsoft.com/text/analyt
ics/v2.1/sentiment', {
 "documents": [{
 "language": "en",
 "id": message.chat.id,
 "text": message.text
 }]
 }, options).then(function (response) {
 message_out = "[" + message.chat.id + "]: " + "Hi, your score
is " + response.data.documents[0].score + "."
 axios.post('https://api.telegram.org/bot:<token>/sendMessage',
{
 chat_id: message.chat.id,
 text: message_out
 }).then(response => {
 // We get here if the message was successfully posted
 console.log('Message posted')
 res.end('ok')
 })
 })
})

Server

The server is listening on port 3000:

// Finally, start our server
app.listen(3000, function() {
 console.log('Telegram app listening on port 3000!')
})

Further Development

In the short term, we are considering replacing Azure with Rasa to test the modular
requirements. It is later considered that we will connect an NLU adapter that compares the two
services and takes the best results.

Further Reading

To get a deeper insight into the technical components of our gateway, we recommend to follow
up with some of the topics that are mentioned here or here.

Built With

- Telegram Bot API

https://core.telegram.org/bots/api

Gateway

Seite 6 / 6

- Node.js
- Express.js
- Axios
- Body-Parser
- ZEIT
- cURL
- Microsoft Azure

Versioning

We use GitLab for versioning.

Authors

- Christopher Lehmann - Development & Documentation

- Timo Bruns - Development

Nutzungshinweis: Auf dieses vorliegende Schulungs- oder Beratungsdokument (ggf.) erlangt
der Mandant vertragsgemäß ein nicht ausschließliches, dauerhaftes, unbeschränktes,
unwiderrufliches und nicht übertragbares Nutzungsrecht. Eine hierüber hinausgehende, nicht
zuvor durch datenschutz-maximum bewilligte Nutzung ist verboten und wird urheberrechtlich
verfolgt.

https://nodejs.org/en/
https://expressjs.com/
https://www.npmjs.com/package/axios
https://www.npmjs.com/package/body-parser
https://zeit.co/
https://wiki.ubuntuusers.de/cURL/
https://azure.microsoft.com/de-de/services/cognitive-services/text-analytics/
https://git.ziemers.de/

	Gateway
	Table Of Content
	Getting Started
	Prerequisites
	Telegram Bot
	Set Up
	References

	Overview
	Structure
	Functionalities
	Variables
	API-Call
	Microsoft Azure - Cognitive Services - Headers
	HTTP-POST
	Server

	Further Development
	Further Reading
	Built With
	Versioning
	Authors

