ﬁ datenschutz-maximum Version 19.11.2020 20:29, Seite 1 / 20

Zwischenbericht WS2020/21

BeuthBot Project Group

Lukas Danke
Robert Halwald
Rim Khreis
Alexis Popovski
Dennis Walz

Gliederung

e Einleitung

e Tools

e QOrganisation

e Vorgefundener Stand

e Aktueller Stand

e Bisher aufgetretene Probleme
* Geplante Aufgaben

Einleitung

Chatbots sind ein logisches Produkt der heutigen Automatisierungsara. Sie kdnnen theoretisch flr fast
jedes Unternehmen natzlich sein, da ein erheblicher Teil von Benutzeranfragen ahnlich sind und
wiederholt gestellt werden. Mit der schnellen Entwicklung des maschinellen Lernens, stellen Chatbots
ein relevantes und aktuelles Thema dar, welches immer beliebter und nachgefragter wird. Weshalb
also nicht auch ein Chatbot der Beuth Hochschule fir Technik Berlin? Entwickelt von Studenten, fur
Studenten. Somit kdnnen nicht nur die Mitarbeiter des Studierendenservice entlastet, sondern auch
kleine bis groBe Fragen der Studenten schnell beantwortet werden. Ein intelligenter Chatbot, der per
Text und Sprache bedient werden kann, mittels kinstlicher Intelligenz antwortet und vielen Features,
wie z.B. sich vom Chatbot an wichtige Abgabetermine erinnern zu lassen.

Tools

In diesem Kapitel werden alle Tools aufgelistet und beschrieben, welche wahrend des Projektverlaufes
zum Einsatz kommen.

Jitsi

Jitsi ist ein OpenSource Video-Conferencing-Tool, welches im Rechenzentrum der Beuth-Hochschule
gehostet wird. Dadurch ist der Datenschutz gewahrleistet. Das Tool wird fur die regelmaRigen
wochentlichen digitalen Treffen zwischen dem Betreuer und dem Projektteam zum Austausch von
Informationen und Fragen genutzt.

https://wiki.ziemers.de/wiki/software/beuthbot/berichte/ws2020/zwischen?rev=1605814179 Gedruckt 01.02.2026 12:37

Zwischenbericht WS2020/21

Telegram

Telegram ist ein kostenloser, verschlisselter Text- und Sprachnachrichten-Dienst, welcher sowohl auf
mobilen Geraten als auch Desktop-Ansicht funktioniert. Auch Uber Telegram kommuniziert das
Projektteam Uber Textnachrichten mit dem Betreuer, falls, in den Tagen vor oder nach dem Meeting
in Jitsi, Fragen aufkommen, welche schnellstmdéglich beantwortet werden mussen.

Discord

Discord ist ebenfalls ein kostenloser Onlinedienst mit Chat-, Sprachkonferenz- und Videokonferenz-
Funktion. Das Projektteam nutzt Discord, um sich, nach den wdchentlichen Treffen mit dem Dozenten,
nochmal untereinander auszutauschen und auch an anderen Wochentagen zusammenzutun um sich
Zu organisieren.

Jira

Jira ist eine von Atlassian entwickelte Webanwendung, welche dem Projektmanagement bzw.
Aufgabenmanagement dient. In Jira verfasst das Projektteam die Anforderungen des Projekts in
kleineren Tasks, um diese wochentlich in konstanten Schritten abzuarbeiten. AuBerdem werden dort
bislang die Stundenaufwande der einzelnen Projektmitglieder dokumentiert.

GitHub

GitHub ist ein netzbasierter Dienst zur Versionsverwaltung flr Software-Entwicklungsprojekte. Er wird
fur die Zusammenfuhrung der Arbeitsergebnisse des Projektteams genutzt.

Ziemer's Wiki

Im Wiki befindet sich eine groRe Sammlung an Berichten, Dokumentationen und Information zum
BeuthBot und die Arbeit der vorherigen Semester an diesem. Diese grolse Ansammlung dient dem
Projektteam zur Einarbeitung in das Projekt bzw. dem BeuthBot, aber auch zur Inspiration, wie sie
bestimmte Dinge angehen und gestalten kdnnen. Des Weiteren halt das Projektteam in Ziemer's Wiki
allgemeine Notizen zum Uberblick, aber auch natiirlich den Zwischenbericht und andere
Dokumentationen fest.

IDEs

Im folgenden werden die verschiedensten Entwicklungsumgebungen aufgelistet, welches jedes
Projektmitglied nach seinen Vorlieben und Praferenzen nutzt, um am Code des BeuthBot's zu arbeiten
und die Anforderungen umzusetzen.

e Visual Studio Code
e WebStorm / PHPStorm (Jetbrains Produkte)

Seite 2/ 20

Zwischenbericht WS2020/21

Sonstiges

Postman

Postman ist ein Programm zum Entwickeln, aber auch zum Testen von bereits bestehenden REST
API's. Mit diesem Tool kann das Projektteam die Antwort auf ihre Anfragen Uberprifen.

Organisation

Jede Woche (Donnerstag 10:00) findet zwischen den Studierenden und dem Dozenten eine
Rucksprache in Form eines Videochats mittels Jitsi statt. Bei diesem Treffen werden die Ergebnisse
der letzten Woche besprochen, mogliche Unklarheiten geklart und Ziele fur die folgende Woche
gesetzt.

Zur allgemeinen Kommunikation auSerhalb der wochentlichen Rucksprachen zwischen Studierenden
und Dozent wird Telegram verwendet, um kleinere Fragen zu klaren, welche nicht bis zum nachsten
Rucksprachetermin warten kénnen. Da der BeuthBot zum Start des Projektes nur Telegram
unterstitze, erwies sich dies als logische Wahl.

Zur privaten Kommunikation unter den Studierenden wird Discord verwendet. Discord bietet den
Vorteil, dass sowohl Text-Chat als auch Voice- und Video-Chat madglich ist. Dies bietet viel Flexibilitat
bei der Kommunikation innerhalb des Teams. Der Server wird privat gehostet, dadurch ist der
Datenschutz hier ebenfalls gewahrleistet. Viele der Studierenden haben auch bereits Erfahrung bei
der Verwendung von Discord, wodurch keine lange Einarbeitungszeit notwendig war. Zusatzlich wurde
sich auch dafur entschieden, den BeuthBot ebenfalls Uber Discord zuganglich zu machen.

Vorgefundener Stand

Der Beuthbot besteht aus mehreren ineinandergreifenden Microservices, die Uber eine umfassende
API miteinander kommunizieren. Durch diesen gewahlten Ansatz lassen sich jederzeit weitere
Microservices integrieren. Die Basis stellen folgende 4 Komponenten dar:

e Bot

e Gateway
e Registry
e Services

Bot

Hierbei handelt es sich um eine Abstraktion der verfugbaren Chatbots unterstitzter Messaging-
Dienste. Der Nutzer interagiert mit diesem Microservice, indem er Anfragen stellt und Antworten des
Beuthbots erhalt.

Gateway

Seite 3/20 https://ds-maximum.de

Zwischenbericht WS2020/21

Das Gateway stellt das Herz des BeuthBots dar. Der Bot informiert das Gateway mit der vom User
empfangenen Nachricht, nutzt dann NLP Microservices, um die Bedeutung und Absicht des Nutzers zu
erkennen und informiert den entsprechenden Service, um dem Nutzer eine adaquate Antwort zu
liefern.

Registry

Nachdem die Absicht des Nutzers analysiert worden ist, informiert das Gateway die Registry, um die
Informationen zu erhalten, die der Nutzer bendtigt. Darauffolgend verteilt die Registry die Anfrage an
den entsprechenden Service.

Service

Die Services liefern die seitens des Nutzers angefragten Daten. So liefert bspw. Der MensaService
Informationen zu aktuellen Men(s, welche via diverser Parameter gefiltert warden (etwa nur
vegetarische Gerichte).

API

Die Mikroservices kommunizieren untereinander mittels einer API. Sie basiert auf einem Response-
Objekt, das die einzelnen Microservices durchlauft. Es besteht aus der anfanglichen Anfrage des
Nutzers, seiner Daten und der ihm erstellten Antwort.

BeuthBot \

Services \

database

% weather l mensa

User A \\ 1]

AN
J/ NLU / [Database \ d SN

7 we
deconcentrator-js m rasa

telegram-bot database-controller

mongo-db

A

A
N

_

Aktueller Stand

Der Bot war standig nicht erreichbar

Der Bot lauft via docker-compose in einer VM. Immer wenn der Bot nicht erreichbar war, startete er
neu sobald sich jemand in die VM einloggte und war dann auch wieder erreichbar. Der Grund dafur
war, dass docker-compose so konfiguriert war, dass die Container zwar neu starten sollten, aber nicht
sofort wenn sie absturzten (sondern in diesem fall dann eben beim Login durch einen docker-user).

Seite 4 / 20

Zwischenbericht WS2020/21

Der Lsung bestand entsprechend in der Anderung der Configuration nach ,restart-always*.
https://github.com/beuthbot/beuthbot/pull/3

Gateway funktionierte nicht ohne Telegram-ID

Bei ersten Experimenten ist aufgefallen, dass wenn eine Nachricht an das Gateway geschickt wird und
diese keine valide Telegram-ID enthielt, wurde die Nachricht ignoriert. Dieses war entgegen der
Dokumentation, welche die Telegram-ID als optional definierte. Da dies flr Testzwecke sehr hinderlich
ist und im Projektverlauf zwei weitere Messenger (Discord und eigene Webseite) hinzugeflugt werden
sollen, galt dieses als eines der ersten Probleme die behoben werden sollten.

Durch eine Anpassung des Gateways bei der User-Abfrage wird eine valide Telegram-ID nicht
vorausgesetzt. https://github.com/beuthbot/gateway/pull/2

Continous Deployment

Continous Integration & Deployment ist ein wichtiger Pfeiler fir ein stabiles Production Environment.
Durch eine CI/CD Pipeline kann sichergestellt werden, dass das Deployment nachvollziehbar,
zuverlassig ausgefuhrt wird und bietet zugleich die Méglichkeit Qualitatssicherungs-Mechanismen in
der Pipeline zu manifestieren.

Zu Beginn des Semesters wurde das Deployment manuell ausgeldst. Es gab mehrere Scripte, die
diesen Vorgang unterschiedlich angingen. Die Updatestrategie ist grundsatzlich ,alle Repositories
updaten via git pull“ - leider gab es hier allerdings flaws, die dazu fuhrten dass das lokale Repository
Lunrein“ wurde und nicht automatisch aktualisiert werden konnte.

Hinzu kam das Problem, dass die Ordnerstruktur unterschiedlichen Usern gehorte, immer denjenigen,
die das Update ausgefuhrt haben, bei dem die Dateien erstmals im Repository auftauchten. Dadurch
scheiterten Updates zusatzlich, wenn , der falsche user” das update versuchte bzw. ,die falschen
dateien” im update aktualisiert wirden.

Wir haben via Github-Actions eine CI/CD Pipeline erstellt, die den Deployment Prozess in 3 Stages
ausfihrt: Build, Test, Deploy. Die Test-Stage ist via Makefile angebunden, so dass Entwicklerlnnen
neue Tests simpel in eine zentrale Stelle eintragen kdnnen. Das Makefile ist nun Single Point of Truth.
Die teilweise widerspruchlichen Scripte von vorher wurden aufgeraumt

Code Anderungen im Repo (Pull Request): https://github.com/beuthbot/beuthbot/pull/4

Mithilfe eines Selfhosted-Runners welcher auf dem BeuthBot-Server installiert wurde, ist es jetzt
moglich diesen Prozess zu automatisieren. Sobald ein Git-Commit mit einem Versions-Tag gepusht
wird, wird dies vom Runner erkannt und der Deploy-Prozess wird angestolSen. Der Runner fuhrt die
Aktualisierung auf der VM des Bot durch.

Doku zur Runner Config:
https://github.com/beuthbot/beuthbot/blob/master/.documentation/github-runner.md

Public Domain

Seite 5/ 20 https://ds-maximum.de

https://github.com/beuthbot/beuthbot/pull/3
https://github.com/beuthbot/gateway/pull/2
https://github.com/beuthbot/beuthbot/pull/4
https://github.com/beuthbot/beuthbot/blob/master/.documentation/github-runner.md

Zwischenbericht WS2020/21

Es gab keine Public Domain zum Telegram Gateway. Diese brauchen wir aber um a) eine Landing
Page fur den Bot zu hosten und b) das Gateway von Chatbots ansprechen zu kénnen, die nicht in der
VM gehosted sind. Damit dies funktioniert wurde ein Proxy-Pass fur die Default-Domain von
https://beuthbot.ziemers.de/ angelegt. Damit wird jetzt folgender Curl Méglich: $ curl
https://beuthbot.ziemers.de/message -X POST -H ,,Content-Type: application/json” -data

. {\“textl,:\“Wie wird das Wetter morgen?\,}“

Text 2 Speech Recherche

e Say.js
o https://www.npmjs.com/package/say
o https://github.com/marak/say.js/
2. Web Speech API
o https://wiki.selfhtml.org/wiki/JavaScript/Web_Speech
3. Text2Speech
o https://www.npmjs.com/package/text-to-speech-file

Speech 2 Text Recherche

Mozilla Voice STT (DeepSpeech)

https://github.com/mozilla/DeepSpeech https://github.com/AASHISHAG/deepspeech-german

e Opensource

e Offline nutzbar

¢ Viel Dokumentation
Deutsches Modell
WER: 15%

e Zukunft ungewiss

Kaldi

https://github.com/kaldi-asr/kaldi http://kaldi-asr.org/doc/about.html

e Opensource

e Offline nutzbar

e Deutsche Modelle
e WER: 8,44%

Wav2Letter

https://github.com/facebookresearch/wav2letter

¢ Opensource

o Offline nutzbar

e Deutsche Modelle
e WER: 4%

Seite 6 / 20

https://beuthbot.ziemers.de/
https://beuthbot.ziemers.de/message
https://www.npmjs.com/package/say
https://github.com/marak/say.js/
https://wiki.selfhtml.org/wiki/JavaScript/Web_Speech
https://www.npmjs.com/package/text-to-speech-file
https://github.com/mozilla/DeepSpeech
https://github.com/AASHISHAG/deepspeech-german
https://github.com/kaldi-asr/kaldi
http://kaldi-asr.org/doc/about.html
https://github.com/facebookresearch/wav2letter

Zwischenbericht WS2020/21

Espresso

https://github.com/freewym/espresso

e Opensource
e Offline nutzbar
¢ Kein deutsches Modell

Nvidea OpenSeq2Seq

https://github.com/NVIDIA/OpenSeq2Seq

¢ Opensource
o Offline nutzbar
¢ Kein Deutsches Modell

WER Vergleich 2017

* Google (8%)
Microsoft (5.9%)
IBM (5.5%)
Apple (5%)
Baidu (16%)
Hound (5%)

Quelle:
https://askwonder.com/research/current-voice-recognition-word-error-rates-google-amazon-micr
osoft-ibm-apple-5b88trjot

Bisher aufgetretene Probleme

Voruiberlegung: Save-Storage / Moodle Integration

Eine initiale Feature-ldee fur dieses Semester war es, dem Bot eine Moodle-Integration zu
implementieren, durch die der Nutzer Ereignisse in Moodle mitgeteilt und an Abgabetermine
erinnert werden kann. Moodle bietet hierflr eine REST-API:
https://docs.moodle.org/dev/Web_service APl functions.

Problem 1: Login

Damit user-bezogene Daten abgerufen werden kénnen muss der User sich in Moodle via
username + passwort einloggen. Dieser Login kann nicht Gber die Chatbot-Funktionalitaten
erfolgen, da Messenger in der Regel keine Passwort-Eingabe ermdglichen, was darin mindet,
dass die Credentials im Cleartext im Chatlog landen.

Ldsung: Es bendtigt ein Webformular, was den Moodle-Login sicher zentralisiert. Der Bot darf im
Chat nur den Link zum Login ausspielen.

Seite 7 /20 https://ds-maximum.de

https://github.com/freewym/espresso
https://github.com/NVIDIA/OpenSeq2Seq
https://askwonder.com/research/current-voice-recognition-word-error-rates-google-amazon-microsoft-ibm-apple-5b88trj0t
https://askwonder.com/research/current-voice-recognition-word-error-rates-google-amazon-microsoft-ibm-apple-5b88trj0t
https://docs.moodle.org/dev/Web_service_API_functions

Zwischenbericht WS2020/21

Problem 2: Speicherung des Tokens

Der BeuthBot ist ein Studierenden-Projekt. Es gibt derzeit keinen Production-Server, der nicht
von Studierenden eingesehen werden kann. Die hohe Fluktuation an ,, Administratoren” erzeugt
ein hohes Risiko fur das ,Leaken” von gespeicherten Credentials.

Gefahren:

Boswilliger Entwickler (programmiert daten-abfluss)

Gutwilliger Entwickler (macht Programmierfehler)

Boswilliger Admin (transferiert/liest persistierte daten)
Gutwilliger Admin (dupliziert/transferiert daten als backups)
Boswilliger Nutzer (nutzt sicherheitslicken / programmierfehler)

ke whe

Losung 1: Das User-Token wird nur im RAM abgelegt

Das Token wird so nie auf die Festplatte geschrieben

1. [x] Boswilliger Entwickler (programmiert daten-abfluss)

2. [v] Gutwilliger Entwickler (macht Programmierfehler)

3. [v] Boswilliger Admin (transferiert/liest persistierte daten)

. [v] Gutwilliger Admin (dupliziert/transferiert daten als backups)

5. [v]Boswilliger Nutzer (nutzt sicherheitslicken / programmierfehler)

B

Nachteil L6sung 1: Die Usability leidet stark, wenn der User sich standig neu einloggen muss,
weil der Bot die Credentials beim Neustart vergisst. Vor allem flr Erinnerungs-Features ist das
ein Showstopper.

Losung 2: Das User-Token wird nur persistiert, wenn die Datenbank geschrieben wird.

Die Daten werden beim Speichern mit einem One-Time-Token verschlusselt. Beim nachsten
Start des Dienstes werden die Daten entschlusselt und die persistente Kopie geldscht

1. [x] Boswilliger Entwickler (programmiert daten-abfluss)

2. [v] Gutwilliger Entwickler (macht Programmierfehler)

3. [x] Boswilliger Admin (transferiert/liest persistierte daten)

. [v] Gutwilliger Admin (dupliziert/transferiert daten als backups)

5. [v] Boswilliger Nutzer (nutzt sicherheitslicken / programmierfehler)

N

Nachteil Losung 2: Der One-Time-Key muss auch irgendwie gespeichert werden. Da dieser auch
fur die Anwendung zuganglich sein muss liegt er gewissermalien neben der verschlisselten
Datei. Ein cleveres One-Time-Verfahren kann hier zwar dafur sorgen, dass fremder Zugriff auf
die Daten nicht unbemerkt bleibt - Gerade Backups kénnen auf diese Art ganz gut abgesichert
werden indem der Key dort nicht gespeichert wird. Ein echter Schutz der Daten ist aber nicht
gegeben, spatestens der boswillige Admin wird einen Weg finden das Verfahren zu
manipulieren

Seite 8 / 20

Zwischenbericht WS2020/21

Fazit: Wir haben uns gegen eine Speicherung von User-Credentials entschieden, Solange es kein
(professionell administriertes und zugriffsbeschranktes) Produktiv-Environment gibt.

Geplante Aufgaben

ID Name Prioritat Initiale Abhangig Wird
Aufwandsschatzung von verticketet
(in Tage)
1 Fix: Gateway funktioniert nicht ohne Telegram-ID 1 1 Lukas
Danke
2 Rasa Update auf 2.0 1 1 Robert
Halwal
3 Common Definitions und Funktionen fiir Bot- 2 1 1 Dennis Walz
Messenger-Clients in Library zusammenfassen
4 Discord ChatBot Implementation 2 2 1,4 Dennis Walz
5 ErinnerungsFeature Command & Erinnerung 2 3 2 Dennis Walz
6 ErinnerungsFeature - Scrape Beuth Termine 3 1 6 Dennis Walz
7 Speech To Text 2 3 Robert
Halwal
8 Text To Speech 2 3 Alexis
Popovski
9 ErinnerungsFeature - Scrape Moodle iCal export 3 1 6 Dennis Walz
(https://Ims.beuth-hochschule.de/calendar/export.php)
10 Cross Platform Erkennung + Datenbank “telegram_id” 3 3 Lukas
zu one:many relation Danke
11 Begrufungsnachricht in Chatbot-Clients (listen auf 4 1 Rim Khreis
erst-kontakt) + Nachricht von Server
12 Website mit Prasentation aller BeuthBot-Resourcen 4 3 1,4 Rim Khreis
(Wiki, Telegram, Discourse, Github) und
Implmentation Chatbot
13 Universelles Scraper & Download 4 3 Alexis
Popovski
14 Personalliste Gesamtverzeichnis 4 2 2 Lukas
Danke
Seite 9/ 20 https://ds-maximum.de

https://lms.beuth-hochschule.de/calendar/export.php

Zwischenbericht WS2020/21

BeuthBot

Servic¢ \ / \
v > -—
mensa weather database F»[registry

User\ /ﬁ
/T / NLU Database \ ‘//
4

discord-bot deconcentrator-js rasa database-controller -
mongo-db

Speech \
K N

speech-controller H say.js wav2letter](—)[model

website-bot telegram-bot

BOT-12: Rasa 2.0 Update

Um die neusten Funktionen und Fixes von Rasa zu benutzen, ist ein Update von Version 1.6
auf 2.0 notwendig.

Zustanidigkeit Robert Halwaly

Initiale Schatzung 3 Tage

Programmiersprachen * Python

Frameworks/Libraries * Rasa

Services * NLU

Abhangigkeiten keine

Anforderungen * Kompatibilitat mit bestehenden NLU-Trainingsdaten
erhalten
* Mogliche JSON- und MarkDown-Dateien in YAML-Datein
umwandeln

Tasks * BOT-124: docker-compose.yml anpassen

* BOT-61: Chatito Kompatibiltat testen

* BOT-62: Config Anpassen

* BOT-63: Duckling updaten

* BOT-64: Modell neu trainieren

* BOT-116: Performance zwischen Version 1.6 und 2.0
vergleichen

BOT-30: Chatbot Library: Vereinheitlichung der Kommunikation von Javascript Chatbots mit
dem Gateway

Problem: Derzeit muss jede Anwendung, die den BHT-Bot als Chatbot implementieren mdéchte
selbst implementieren, wie die Kommunikation zwischen Anwendung und Gateway aussieht,
als auch die Schnittstellen Parameter in Anfrage und Antwort.

Um diese Implementationsredundanz zu verhindern, wird die Kommunikation und
Typedefinitionen in einer zentralen Javascript Bibliothek zusammengefasst.

Dies ermdglicht auch weitere geplante Funktionalitaten (wie der asymmetrische
Kommnuikationskanal zur Requestunabhangigen Server - Client Kommunikation) zentral
entwickelt und mittels Dependency Management schnell in die ChatClients Uberfuhrt werden.

Seite 10/ 20

Zwischenbericht WS2020/21

Initiale Schatzung 1

Technologien

Abhangigkeiten

Anforderungen

Tasks

* Javascript
* Typescript

keine

* Die Library Iasst sich in Node und Browser Javascript einbinden * Die
Library nutzt semantische Versionierung zur Ermdglichung von Non-
Breaking-Updates * Die fertige Library lasst sich via Dependency-
Management (npm/yarn/webpack) userseitig einbinden und updaten * Die
Library enthalt typisierte (typescript) Entitaten fur Common Request und
Response Format(e) * Die Library enthalt Unit-Tests fir essentielle
Funktionen und Typen * Die Library ist dokumentiert, sowohl was
Nutzung, als auch Contribution angeht * Die Library verbessert die
Collaboration mittels Linting-Regeln und Workflow-Scripten

* BOT-33 Library Usage Dokumentieren

* BOT-34 Library in Discord Bot integrieren

* BOT-35 Library in Telegram Bot integrieren

* BOT-36 Library in Website integrieren

* BOT-31 Common Funktionalitat / Use Cases identifizieren
* BOT-32 Typescript Library fur Bot erstellen

BOT-37: Discord Integration des BHT-Bot

Discord ist eine weit verbreitete Kommunikatinsplattform, auf der Nutzer sich in ,,Servern*
vernetzen und dort meist thematisch organisiert kommunizieren kdnnen. Die Projektgruppe
des WS2020 ist selbst Teil der Zielgruppe des Discord-Messengers, wodurch sich diesese
Plattform besonders eignet um einen weiteren Chatservice (neben Telegram) an den BHT-Bot

anzubinden.

Eine Implementation des Chatbots innerhalb der Discord-Struktur steigert somit zum Einen die
Verbreitung(smaoglichkeit) des BHT-Bot und bietet gleichzeitig eine gute Méglichkeit Debug-
Bot-Instanzen im praferierten Messenger zu betreiben.

Initiale Schatzung

Technologien

Abhangigkeiten

2

* Javascript
* Docker

*BOT-30

Seite 11/ 20

https://ds-maximum.de

Zwischenbericht WS2020/21

Anforderungen * Der Discourse Bot benutzt die zu entwickelnde zentralisierte
Library zur Gateway Kommunikation um Coderedundanz mit dem
Telegram Bot zu verhindern
* Der Discourse Bot kann (direkte) Nutzer-Nachrichten mittels
Gateway verarbeiten und antwortet dem User entsprechend
* Wenn keine Verbindung mit dem Gateway besteht oder Fehler
bei Anfragen auftreten reagiert der Chatbot durch Prasentation
einer hilfreichen Fehlermeldung
* Der Discourse Bot wird aquivalent zum Telgram Bot in das BHT-
Bot Universum mittels Docker + compose integriert
* Der Discourse Bot ist nicht Teil des BHT Bot, er wird als
paralleler, unabhangiger Service betrieben
* Alle Credentials und Urls/Ports werden aus dem Environment
bezogen, es gibt keine hard-coded Referenzen zu Strukturen des
BHT-Bot Gateways

Tasks * BOT-38 Node)S Chatbot erstellen
* BOT-39 Docker Container + Compose fur Container erstellen
* BOT-40 Bot Usage dokumentieren
* BOT-41 Bot Account anlegen fur release
(https://discord.com/developers/applications)
* BOT-42 Bot Container in Beuth-Docker-Netzwerk einbinden
(release)

BOT-43: Erstellung eines Common-Frameworks fur (Content-)Services

Services im BHT-Bot kommunizieren alle Gber REST-Schnittstellen. Diese sind alle als Express-
Anwendung mit JSON-Kommunikation implementiert, was fur viel Code-Redundanz fihrt.
Gleichzeitig benutzt kein Service strukturierte Darstellungen der Schnittstellen, wie Anfragen
und Antworten zum Gateway, User Daten oder Rasa-Intents.

Ein spezieller, repititiver, Unterfall der Microservices sind solche, die Content bereitstellen.
Diese erhalten alle Nachrichten vom Gateway und senden ihre antworten auch dort wieder
zuruck. Request- und Response sind durch das Gateway definiert, die resultierende Struktur
ist entsprechend fur alle Contentservices prinzipiell Identisch.

Zur Vermeidung von Code-Redundanzen und Erleichterung des ,Kick-Off* eines neuen
Content-Services sollen die Common Funktionen und Entitaten in ein Framework gegossen

werden

Initiale Schatzung 1

Technologien * Javascript
* Typescript
* Dockerfile

Abhangigkeiten * BOT-37

Seite 12/ 20

https://discord.com/developers/applications

Zwischenbericht WS2020/21

Anforderungen * Das Framework implementiert eine NodeJS Express
REST-API, aquivalent zu den existierenden Content-
Services
* Das Framework Iasst sich in Node)S Anwendungen via
Dependency-Management einbinden (npm/yarn)

* Das Framework abstrahiert den (Express) Server und
dessen Routing, so dass ein Contentservices nur noch die
Response implementieren muss

* Das Framework implementiert die Schnittstelle zum
Datenbankservice um a) Userdaten zu
speichern/abzurufen und b) eigene Daten zu speicher und
abzurufen

* Das Framework flllt die “debug-history” der Requests
so, dass ein Service dieses Feature zwangsweise
implementiert / nutzt

* Requests, Responses, User, Rasa-Intents und ggf.
weitere Entitaten werden durch das Framework als
typisierte (typescript) Objekte definiert

* Das Framework wird in allen bestehenden und geplanten
Content-Services implementiert: Wetter, Mensa, Reminder
* Die Nutzung des Frameworks ist verstandlich
dokumentiert

* Die Contribution wird mittels Linting, Dokumentation und
Build-Scripts erleichtert

* Das Framework nutzt types aus der (noch zu
entwickelnde) BHT-Bot Library um Redundanzen zwischen
Client-Bibliothem und Service-Framwork zu vermeiden

Tasks * BOT-44 Common Code, Features, Entitaten identifizieren
- Use Case ableiten
* BOT-45 Typisiertes Javascript Framework erstellen
* BOT-46 Framework einbinden in Weather Service
* BOT-47 Framework einbinden in Mensa Service
* BOT-48 Framework einbinden in Reminder Service
* BOT-108 Framework dokumentieren
* BOT-117 Request History implementieren - Nutzung
enforcen

BOT-49: User-Messenger-Service: Nachricht proaktiv, requestunabhangig an Clients senden
Der BHT-Bot kann bisher nur passiv auf Anfragen warten und diese dann beantworten. Zur
Implementierung von asymmetrischer bzw. request-unabhangiger Kommunikation bendtigt
der Bot einen neuen Service, der als Schnittstelle flr diese Art von Kommunikation dient.
Initiale Schatzung 2.5
Technologien * Javascript

* Websockets

* Docker

Abhangigkeiten * BOT-30

Seite 13/ 20 https://ds-maximum.de

Zwischenbericht WS2020/21

Anforderungen * Der User-Messenger-Service kann eine Nachricht an einen User (via Client-
Unabhangiger User-ID) senden
* Wenn ein User mehrere Clients benutzt, wird die Nachricht an alle Clients
gesendet
* Wenn ein User (Uber langere Zeit) nicht erreichbar ist wird die Kennung
entfernt
* Wenn eine Nachricht nicht an einen User gesendet werden kann bekommt
der auslésende Service diese Information unterscheidbar zwischen a) Der
Nutzer ist gerade nicht erreichbar b) Der Nutzer ist dauerhaft nicht
erreichbar (geldscht) c) Der Dienst ist generell unhealthy
* Der Service wird als Docker Image via docker-compose in die BHT-Bot
Infrastruktur integirert. Er ist Teil des BHT-Bot Repositories
* Die Funktionalitat des Services wird auf Clientseite in die Common-
Chatbot-Library (BOT-30)
* Alle bestehenden ChatBot-Services werden an den Messenger Service
angebunden (Telegram, Discord)

Tasks * BOT-50 Websocket Registry flr ChatBotClients
* BOT-51 REST-Service fur Nachrichtenversand
* BOT-52 Implementation der Websocket-Registrierung in Common-Library
fur Chatbots
* BOT-53 Implementierung der Common-Library-Websocket-Registrierung in
TelegramBot
* BOT-54 Implementierung der Common-Library-Websocket-Registrierung in
DiscordBot
* BOT-56 Dokumentation Usage Service
* BOT-110 Deployment / Release

BOT-55: Erinnerungs-Service: Behandelt ,,erinnere mich” Befehle und erinnert bei Falligkeit
autonom

Erinnerungen schedulen zu kdnnen ist ein typischer, weil praktischer, Anwendungsfall in
beliebten (Business) Kommunikations-Services wie Slack oder Mattermost. In beiden Fallen
wird diese Funktionalitat durch die hauseigenen Reminder-Bots zur Verfugung gestellt.

Um die Featuredichte des BHT-Bot zu erh6hen wird ein Reminder-Service erstellt, durch den
identische Funktionalitat wie bei genannten Diensten zur Verfiigung stellt. Durch die Multi-
Messenger-Fahigkeit des BHT-Bot wird dieses Feature somit auch fur User angeboten, deren
Kommunikations-Plattform keinen eigenen Reminder-Bot anbietet.

BeispielAnfragen:

* Erinnere mich am 22.10. an die Klausur in Mathe

* Erinnere mich jeden Donnerstag um 18 Uhr an den Ballettkurs

* Erinnere mich jedes Jahr am 01.01 an den Geburtstag meiner Mutter.

* Erinnere mich in 10 Tagen das Probeabonnement zu kindigen

* <Erinnere> <Zeitpunkt/Zeitspanne/Interval> <Thema>

Initiale Schatzung 3

Technologien * Javascript
* Docker
* Rasa
* MongoDB
* Cronjob

Seite 14/ 20

Zwischenbericht WS2020/21

Abhangigkeiten *BOT-43
*BOT-30
*BOT-12
* BOT-49

Anforderungen * Erfolgreiche ,erinnere”-Anfragen werden vom Dienst
durch Bestatigung der erkannten und persistierten Daten
beantwortetoder
* Fehlerhafte “erinnere”-Anfragen werden durch ein Mini-
Usage-Tutorial beantwortet, damit der User seine Anfrage
korrigieren kann
* Erinnerungen werden auf user-ebene (clientunabhangig)
gespeichert, so dass ein User die gleichen Erinnerungen in
allen genutzten Clients zur Verfigung hat
* Erinnerungen werden bei Falligkeit einmalig (an alle
clients des users) ausgespielt
* Wiederkehrende Erinnerungen werden ausgespielt und
anschlieBend an Hand des Intervals neu terminiert
* Der Nutzer kann Erinnerungen I6schen
* Der Nutzer kann seine Erinnerungen anzeigen lassen
* Der Service wird als Docker Container via docker-
compose verwaltet und in das BHT-Repository integriert
* Der Service nutzt das (noch zu schaffende) Content-
Service-Framework
* Wenn der Reminder-Service nach einem Ausfall wieder
aktiv wird erinnert er nicht (einzeln) an alle Termine, die
zwischenzeitig fallig waren
* Der Serive ist in Hilfe-Texten des (Chat) BHT-Bots
integriert

Tasks * BOT-57 Rasa Anbindung , Erinnere“-Direktive
* BOT-58 Service Endpoint speichert Reminder und
Antwortet auf Probleme
* BOT-59 Scheduler/Cronjob prift und sendet regelmalig
fallige Erinnerungen
* BOT-60 Dokumentation Service Usage
* BOT-109 Deployment / Release
* BOT-112 Hilfe-Texte in (Chat)BHT-Bot help-command /
willkommensnachricht

BOT-82: Termin-Scraper, der automatisch Erinnerungen aus 6ffentlichen Quellen bezieht

Es gibt Termine, an die wollen alle Studierenden typischerweise erinnert werden, als auch
Termine, von denen die Universitat mochte, dass die Studierende sich daran erinnern.
Typische Beispiele hierfur sind Ruckmeldefristen und (Beuth-eigene) Feiertage.

Durch einen Webscraper sollen solche Termine aus (6ffentlichen) Quellen automatisch
bezogen und dann an alle Studierenden ausgespielt werden.

Auch wenn dieses Feature fur die meisten Studierenden interesssant sein durfte, muss es eine
Madglichkeit zum Opt-Out geben. Ggf. ist sogar angezeigt, dass ein Opt-In erfolgt, was
allerdings den Nutzen des Features, vor allem aus Universitatssicht, mindern warde.

Initiale Schatzung 1
Technologien * Javascript
* Docker
* HTML-DOM

Seite 15/ 20 https://ds-maximum.de

Zwischenbericht WS2020/21

Abhangigkeiten

Anforderungen

Tasks

*BOT-55

* Relevante Termine werden regelmaRig, automatisch bezogen
und als Erinnerung gespeichert

* User kdnnen “globale Erinnerungen” aktivieren oder
deaktivieren

* Das Feature ist resistent gegen Anderungen an den Domains
oder deren Struktur - Fallen gescrapete Dienste langer aus
wird dies reported

* Das Feature wird als nicht-eigenstandig in den Reminder
Service integriert

* Das Feature ist bzgl. Opt-in oder Opt-out in den Hilfe-
Texten/BegriuBungsnachrichten des BHT-Bot dokumentiert

* BOT-83 Prufen ob Opt-In (ndtig ist) oder Opt-Out (maglich ist)
* BOT-84 Quellen mit relevanten Terminen zusammentragen -
auf Scrapebarkeit achten

* BOT-85 Scraping (mittels Scapring-Service) implementieren
* BOT-86 Termine aus Scraping in Erinnerungs Datenbank
uberfuhren

* BOT-87 Rasa Direktive Opt-In oder Opt-Out implementieren
* BOT-88 Error-Reporting implementieren, bei Misslungenen
Scraping (Uber gewisse Zeit hinweg)

* BOT-114 Opt-In oder Opt-Out in Hilfe-Texten /
Willkommensnachricht dokumentieren

BOT-89: Moodle iCal import als Erinnerungen

Moodle ist die zentrale Online-Lernplattform der Beuth Hochschule. Kurse, die in Moodle
verwaltet werden erhalten in der Regel Abgabetermine flr Aufgaben, die wahrend des
Semesters fallig werden. Oftmals stehen diese Abgabetermine bereits zu Beginn des
Semesters in Moodle fest und konnen dort in einer Kalenderansicht betrachtet werden.
Moodle bietet auBerdem eine Funktion zum Export der Eintragungen im eigenen Kalender:
https://Ims.beuth-hochschule.de/calendar/export.php

Der User kann hier einen Link erzeugen, Uber den eine iCal Datei bezogen werden kann. Diese
Datei enthalt die Semestertermine und kann entsprechend in Erinnerungen des Bots

umgewandelt werden

Initiale Schatzung

Technologien

Abhangigkeiten

1

* Javascript
* iCal
* Rasa

*BOT-55

Seite 16 / 20

https://lms.beuth-hochschule.de/calendar/export.php

Zwischenbericht WS2020/21

Anforderungen * Der User kann dem Bot seinen Moodle-Kalender-Export-
Link senden um einen Import auszuldsen
* Die iCal Datei hinter dem Export-Link wird in Erinnerungs-
Eintrdge des Erinnerungs-Service umgewandelt
* Erinnerungen an Abgabetermine erfolgen zu Beginn des
Tages / zeitlich versetzt vor der Falligkeit der Abgabe, nicht
zum im Kalender angegebenen Zeitpunkt
* Das Moodle-Import Feature wird nicht-eigenstandig in den
Reminder-Service integriert
* Das Feature (und seine Nutzung) ist in der BHT-Bot Hilfe
gelistet

Tasks * BOT-90 Import Moodle Rasa Direktive
* BOT-91 Moodle iCal Download via zentralem Scaper
Service
* BOT-92 iCal Parsing und Persistierung als (sinnvolle)
Erinnerung
* BOT-111 Feature Release
* BOT-113 Hilfe-Texte in (Chat)BHT-Bot help-command /
willkommensnachricht

BOT-13: Speech To Text (STT)

Es soll ermdglicht werden, dass Benutzern neben Textnachrichten auch mittels
Sprachnachrichten mit dem BeuthBot kommunizieren kénnen. Dabei sollen die
Sprachnachrichten mittels eines neuen Services in Text Ubersetzt werden und dann wie
andere Textnachrichten verarbeitet werden. Hierzui sollen 3 bekannte STT-Frameworks (Kaldi,
Mozilla Voice STT und Wav2Letter) getestet und vergleichen werden. Basierend darauf soll
eine Entscheidung getroffen werden, welches Framework schlussendlich in der Production-
Environment verwendet werden soll. Das Framework wird dann in Form eines neuen Micro-
Services in den BeuthBot integriert.

Zustandigkeit Robert Halwal
Initiale Schatzung 3 Tage
Programmiersprachen * Python (Mozilla Voice STT)

* C++ (Kaldi, WAV2Letter)

Frameworks/Libraries * Kaldi
* Mozilla Voice STT
* WAV2Letter
Services * Speech
Abhangigkeiten * BOT-43: Erstellung eines Common-Frameworks

fur (Content-)Services

Seite 17/ 20 https://ds-maximum.de

Zwischenbericht WS2020/21

Anforderungen * Die Ubersetzung soll mittels neuronaler Netzte
geschehen
* Nur Sprachnachrichten auf Deutsch sollen
ubersetzt werden
* Das verwendete Framework muss OpenSource
sein und Lokal auf dem BeuthBot-Server
ausfuhrbar sein
* Es soll keine Model-Adapation durchgefihrt
werden

Tasks
BOT-23: Komponente zur Umwandlung von Text in Sprache (TTS)

Neben der bereits vorhandenen Funktion Textnachrichten vom Beuthbot zu erhalten, sollen
Nutzer die Mdglichkeit bekommen ebenfalls Sprachnachrichten zu empfangen. Hierfur wird
eine Komponente zur Konvertierung von Text in Sprache (Eng: , Text-To-Speech (TTS))
bendtigt. Dieses Feature soll dem Nutzer in kinftigen, dem Beuthbot hinzugefugten,
Messenger-Diensten zur Verfligung stehen. Zur Umsetzung soll optimalerweise von einer
Library Gebrauch gemacht werden, welche den Anforderungen gerecht wird.

Initiale Schatzung 1

Technologien Javascript

Abhangigkeiten keine

Anforderungen *Support fur die deutsche Sprache

*Sprachnachrichten lassen sich als MP3- und WAV-Dateien
exportieren

*Das Feature ist bzgl. Opt-in oder Opt-out in den Hilfe-
Texten/BegruBungsnachrichten des Beuthbots dokumentiert

Nice to Haves Sprachgeschwindigkeit und Stimme des Sprechers sind
konfigurierbar

Tasks * BOT-24 Recherche nach geeignetem Tool (TTS)
* BOT-25 Eigene Implementierung (TTS)
* BOT-98 Integration in Beuthbot

BOT-75: BegruBungsnachricht

Neue Benutzer des BeuthBots sollen mit einer BegruSungsnachricht empfangen werden.
Diese Nachricht soll die Features des BeuthBots vorstellen und einen Shortcut nennen,
welchen die Benutzer verwenden konnen, wenn sie Hilfe benétigen. Mit dem Shortcut listet
der BeuthBot nochmals all seine Features auf.

Initiale Schatzung 1
Technologien * JavaScript
Abhangigkeiten Keine

Seite 18 / 20

Zwischenbericht WS2020/21

Anforderungen * Die BegruBungsnachricht erscheint nur fur neue
Benutzer
* Das System sollte einen Shortcut zur
Wiedervorstellung der Features bereitstellen, falls
Benutzer Hilfe brauchen
* Das System muss in der Lage sein, auf die
Hilfeanfrage. des Benutzers mit Hilfe des Shortcuts
innerhalb von 1,5 Sekunden zu antworten
* Das System sollte gut dokumentiert sein
* Das System sollte leicht zu verstehen sein

Tasks * BOT-93 Client
* BOT-94 Server

BOT-74: Webseite
Um eine komplette Ubersicht fiir alle genutzten BeuthBot-Resourcen zu haben, soll eine

Webseite zur Prasentation dieser Ressourcen erstellt werden. Zu den Ressourcen zahlen das
Ziemer's Wiki, Telegram, Discord, Github und die Implementation des Chatbots.

Initiale Schatzung 3
Technologien * TypeScript
* JavaScript
Abhangigkeiten * BOT-10
* BOT-30
Anforderungen * Jeder Ressource wird ein Menupunkt gewidmet,

welcher Infos & einen Link zu der jeweiligen
Ressource enthalt

* Anschauliches & Einheitliches Design der Webseite
* leicht austauschbare Komponenten

* Das System sollte eine Ansicht innerhalb von 3
Sekunden laden

* Das System sollte gut dokumentiert sein

* Das System sollte leicht zu verstehen sein

Tasks * BOT-76 Webseite Einrichten
* BOT-77 Infos zum Wiki
* BOT-78 Infos zu Telegram
* BOT-79 Infos zu Discord
* BOT-80 Infos zu GitHub
* BOT-81 Implementation Chatbot

BOT-11: Universeller Scraper & Download

Der Beuthbot soll einen ,universellen” Web-Scraper beinhalten, der als Grundlage fur kinftige
Features dienen soll, die fur konkrete Scraping-Funktionalitaten vorgesehen sind. Aufgrund
der hohen Diversitat an Datenstrukturen unterschiedlicher Webseiten, soll dieser moglichst
abstrakte Funktionalitaten zur Extrahierung von Datensatzen bieten.

Initiale Schatzung 1

Technologien Javascript

Seite 19/ 20 https://ds-maximum.de

Zwischenbericht WS2020/21

Abhangigkeiten keine

Anforderungen *Import von HTML- und XML-Dateien
*Daten lassen sich im JSON-Format exportieren
*Datensatze sind per HTML-Tags und CSS-
Selektoren extrahierbar
*Dateien einer Webseite lassen sich downloaden

Tasks * BOT-26 Recherche nach geeignetster Methode
(HTML-JSON)

Nutzungshinweis: Auf dieses vorliegende Schulungs- oder Beratungsdokument (ggf.) erlangt
der Mandant vertragsgemaR ein nicht ausschlieBliches, dauerhaftes, unbeschranktes,
unwiderrufliches und nicht Gbertragbares Nutzungsrecht. Eine hieriber hinausgehende, nicht
zuvor durch datenschutz-maximum bewilligte Nutzung ist verboten und wird urheberrechtlich
verfolgt.

Seite 20/ 20

	Zwischenbericht WS2020/21
	BeuthBot Project Group
	Gliederung
	Einleitung
	Tools
	Jitsi
	Telegram
	Discord
	Jira
	GitHub
	Ziemer's Wiki
	IDEs
	Sonstiges
	Postman

	Organisation
	Vorgefundener Stand
	Bot
	Gateway
	Registry
	Service
	API

	Aktueller Stand
	Der Bot war ständig nicht erreichbar
	Gateway funktionierte nicht ohne Telegram-ID
	Continous Deployment
	Public Domain
	Text 2 Speech Recherche
	Speech 2 Text Recherche
	Mozilla Voice STT (DeepSpeech)
	Kaldi
	Wav2Letter
	Espresso
	Nvidea OpenSeq2Seq
	WER Vergleich 2017

	Bisher aufgetretene Probleme
	Vorüberlegung: Save-Storage / Moodle Integration
	Problem 1: Login
	Problem 2: Speicherung des Tokens
	Lösung 1: Das User-Token wird nur im RAM abgelegt
	Lösung 2: Das User-Token wird nur persistiert, wenn die Datenbank geschrieben wird.
	Fazit: Wir haben uns gegen eine Speicherung von User-Credentials entschieden, Solange es kein (professionell administriertes und zugriffsbeschränktes) Produktiv-Environment gibt.

	Geplante Aufgaben

