
 datenschutz-maximum Version 19.11.2020 12:04, Seite 1 / 19

https://wiki.ziemers.de/wiki/software/beuthbot/berichte/ws2020/zwischen?rev=1605783872 Gedruckt 01.02.2026 09:04

Zwischenbericht WS2020/21

BeuthBot Project Group

Lukas Danke
Robert Halwaß
Rim Khreis
Alexis Popovski
Dennis Walz

Gliederung

Einleitung
Tools
Organisation
Vorgefundener Stand
Aktueller Stand
Bisher aufgetretene Probleme
Geplante Aufgaben

Einleitung

Chatbots sind ein logisches Produkt der heutigen Automatisierungsära. Sie können theoretisch für fast
jedes Unternehmen nützlich sein, da ein erheblicher Teil von Benutzeranfragen ähnlich sind und
wiederholt gestellt werden. Mit der schnellen Entwicklung des maschinellen Lernens, stellen Chatbots
ein relevantes und aktuelles Thema dar, welches immer beliebter und nachgefragter wird. Weshalb
also nicht auch ein Chatbot der Beuth Hochschule für Technik Berlin? Entwickelt von Studenten, für
Studenten. Somit können nicht nur die Mitarbeiter des Studierendenservice entlastet, sondern auch
kleine bis große Fragen der Studenten schnell beantwortet werden. Ein intelligenter Chatbot, der per
Text und Sprache bedient werden kann, mittels künstlicher Intelligenz antwortet und vielen Features,
wie z.B. sich vom Chatbot an wichtige Abgabetermine erinnern zu lassen.

Tools

In diesem Kapitel werden alle Tools aufgelistet und beschrieben, welche während des Projektverlaufes
zum Einsatz kommen.

Jitsi

Jitsi ist ein OpenSource Video-Conferencing-Tool, welches im Rechenzentrum der Beuth-Hochschule
gehostet wird. Dadurch ist der Datenschutz gewährleistet. Das Tool wird für die regelmäßigen
wöchentlichen digitalen Treffen zwischen dem Betreuer und dem Projektteam zum Austausch von
Informationen und Fragen genutzt.

Zwischenbericht WS2020/21

Seite 2 / 19

Telegram

Telegram ist ein kostenloser, verschlüsselter Text- und Sprachnachrichten-Dienst, welcher sowohl auf
mobilen Geräten als auch Desktop-Ansicht funktioniert. Auch über Telegram kommuniziert das
Projektteam über Textnachrichten mit dem Betreuer, falls, in den Tagen vor oder nach dem Meeting
in Jitsi, Fragen aufkommen, welche schnellstmöglich beantwortet werden müssen.

Discord

Discord ist ebenfalls ein kostenloser Onlinedienst mit Chat-, Sprachkonferenz- und Videokonferenz-
Funktion. Das Projektteam nutzt Discord, um sich, nach den wöchentlichen Treffen mit dem Dozenten,
nochmal untereinander auszutauschen und auch an anderen Wochentagen zusammenzutun um sich
zu organisieren.

Jira

Jira ist eine von Atlassian entwickelte Webanwendung, welche dem Projektmanagement bzw.
Aufgabenmanagement dient. In Jira verfasst das Projektteam die Anforderungen des Projekts in
kleineren Tasks, um diese wöchentlich in konstanten Schritten abzuarbeiten. Außerdem werden dort
bislang die Stundenaufwände der einzelnen Projektmitglieder dokumentiert.

GitHub

GitHub ist ein netzbasierter Dienst zur Versionsverwaltung für Software-Entwicklungsprojekte. Hier
werden die Arbeitsergebnisse des Projektteams zusammengeführt.

Ziemer's Wiki

Im Wiki befindet sich eine große Sammlung an Berichten, Dokumentationen und Information zum
BeuthBot und die Arbeit der vorherigen Semester an diesem. Diese große Ansammlung dient dem
Projektteam zur Einarbeitung in das Projekt bzw. dem BeuthBot, aber auch zur Inspiration, wie sie
bestimmte Dinge angehen und gestalten können. Des Weiteren hält das Projektteam in Ziemer's Wiki
allgemeine Notizen zum Überblick, aber auch natürlich den Zwischenbericht und andere
Dokumentationen fest.

IDEs

Im folgenden werden die verschiedensten Entwicklungsumgebungen aufgelistet, welches jedes
Projektmitglied nach seinen Vorlieben und Präferenzen nutzt, um am Code des BeuthBot's zu arbeiten
und die Anforderungen umzusetzen.

Visual Studio Code
WebStorm / PHPStorm (Jetbrains Produkte)

Zwischenbericht WS2020/21

Seite 3 / 19 https://ds-maximum.de

Sonstiges

Postman

Postman ist ein Programm zum Entwickeln, aber auch zum Testen von bereits bestehenden REST
API's. Mit diesem Tool kann das Projektteam die Antwort auf ihre Anfragen überprüfen.

Organisation

Jede Woche (Donnerstag 10:00) findet zwischen den Studierenden und dem Dozenten eine
Rücksprache in Form eines Videochats mittels Jitsi statt. Bei diesem Treffen werden die Ergebnisse
der letzten Woche besprochen, mögliche Unklarheiten geklärt und Ziele für die folgende Woche
gesetzt.

Zur allgemeinen Kommunikation außerhalb der wöchentlichen Rücksprachen zwischen Studierenden
und Dozent wird Telegram verwendet, um kleinere Fragen zu klären, welche nicht bis zum nächsten
Rücksprachetermin warten können. Da der BeuthBot zum Start des Projektes nur Telegram
unterstütze, erwies sich dies als logische Wahl.

Zur privaten Kommunikation unter den Studierenden wird Discord verwendet. Discord bietet den
Vorteil, dass sowohl Text-Chat als auch Voice- und Video-Chat möglich ist. Dies bietet viel Flexibilität
bei der Kommunikation innerhalb des Teams. Der Server wird privat gehostet, dadurch ist der
Datenschutz hier ebenfalls gewährleistet. Viele der Studierenden haben auch bereits Erfahrung bei
der Verwendung von Discord, wodurch keine lange Einarbeitungszeit notwendig war. Zusätzlich wurde
sich auch dafür entschieden, den BeuthBot ebenfalls über Discord zugänglich zu machen.

Vorgefundener Stand

Der Beuthbot besteht aus mehreren ineinandergreifenden Microservices, die über eine umfassende
API miteinander kommunizieren. Durch diesen gewählten Ansatz lassen sich jederzeit weitere
Microservices integrieren. Die Basis stellen folgende 4 Komponenten dar:

Bot
Gateway
Registry
Services

Bot

Hierbei handelt es sich um eine Abstraktion der verfügbaren Chatbots unterstützter Messaging-
Dienste. Der Nutzer interagiert mit diesem Microservice, indem er Anfragen stellt und Antworten des
Beuthbots erhält.

Gateway

Zwischenbericht WS2020/21

Seite 4 / 19

Das Gateway stellt das Herz des BeuthBots dar. Der Bot informiert das Gateway mit der vom User
empfangenen Nachricht, nutzt dann NLP Microservices, um die Bedeutung und Absicht des Nutzers zu
erkennen und informiert den entsprechenden Service, um dem Nutzer eine adäquate Antwort zu
liefern.

Registry

Nachdem die Absicht des Nutzers analysiert worden ist, informiert das Gateway die Registry, um die
Informationen zu erhalten, die der Nutzer benötigt. Darauffolgend verteilt die Registry die Anfrage an
den entsprechenden Service.

Service

Die Services liefern die seitens des Nutzers angefragten Daten. So liefert bspw. Der MensaService
Informationen zu aktuellen Menüs, welche via diverser Parameter gefiltert warden (etwa nur
vegetarische Gerichte).

API

Die Mikroservices kommunizieren untereinander mittels einer API. Sie basiert auf einem Response-
Objekt, das die einzelnen Microservices durchläuft. Es besteht aus der anfänglichen Anfrage des
Nutzers, seiner Daten und der ihm erstellten Antwort.

BeuthBot

NLU

Services

Database

gateway

registrycache

deconcentrator-js rasa

weather mensadatabase

database-controller mongo-db

User

telegram-bot

Aktueller Stand

Der Bot war ständig nicht erreichbar

Der Bot läuft via docker-compose in einer VM. Immer wenn der Bot nicht erreichbar war, startete er
neu sobald sich jemand in die VM einloggte und war dann auch wieder erreichbar. Der Grund dafür
war, dass docker-compose so konfiguriert war, dass die Container zwar neu starten sollten, aber nicht
sofort wenn sie abstürzten (sondern in diesem fall dann eben beim Login durch einen docker-user).

Zwischenbericht WS2020/21

Seite 5 / 19 https://ds-maximum.de

Der Lösung bestand entsprechend in der Änderung der Configuration nach „restart-always“.
https://github.com/beuthbot/beuthbot/pull/3

Gateway funktionierte nicht ohne Telegram-ID

Bei ersten Experimenten ist aufgefallen, dass wenn eine Nachricht an das Gateway geschickt wird und
diese keine valide Telegram-ID enthielt, wurde die Nachricht ignoriert. Dieses war entgegen der
Dokumentation, welche die Telegram-ID als optional definierte. Da dies für Testzwecke sehr hinderlich
ist und im Projektverlauf zwei weitere Messenger (Discord und eigene Webseite) hinzugefügt werden
sollen, galt dieses als eines der ersten Probleme die behoben werden sollten.

Durch eine Anpassung des Gateways bei der User-Abfrage wird eine valide Telegram-ID nicht
vorausgesetzt. https://github.com/beuthbot/gateway/pull/2

Continous Deployment

Zuvor musste man um eine neue Version des BeuthBots zu deployen, musste manuell die neuste
Version von GitHub gepullt werden und der Docker-compos-Befehl ausgeführt werden.

Mithilfe eines Selfhosted-Runners welcher auf dem BeuthBot-Server installiert wurde, ist es jetzt
möglich diesen Prozess zu automatisieren. Sobald ein Git-Commit mit einem Versions-Tag gepusht
wird, wird dies vom Runner erkannt und der Deploy-Prozess wird angestoßen.
https://github.com/beuthbot/beuthbot/pull/4

Text 2 Speech Recherche

Say.js
https://www.npmjs.com/package/say
https://github.com/marak/say.js/

Web Speech API 2.
https://wiki.selfhtml.org/wiki/JavaScript/Web_Speech

Text2Speech3.
https://www.npmjs.com/package/text-to-speech-file

Speech 2 Text Recherche

Mozilla Voice STT (DeepSpeech)

https://github.com/mozilla/DeepSpeech https://github.com/AASHISHAG/deepspeech-german

Opensource
Offline nutzbar
Viel Dokumentation
Deutsches Modell
WER: 15%
Zukunft ungewiss

https://github.com/beuthbot/beuthbot/pull/3
https://github.com/beuthbot/gateway/pull/2
https://github.com/beuthbot/beuthbot/pull/4
https://www.npmjs.com/package/say
https://github.com/marak/say.js/
https://wiki.selfhtml.org/wiki/JavaScript/Web_Speech
https://www.npmjs.com/package/text-to-speech-file
https://github.com/mozilla/DeepSpeech
https://github.com/AASHISHAG/deepspeech-german

Zwischenbericht WS2020/21

Seite 6 / 19

Kaldi

https://github.com/kaldi-asr/kaldi http://kaldi-asr.org/doc/about.html

Opensource
Offline nutzbar
Deutsche Modelle
WER: 8,44%

Wav2Letter

https://github.com/facebookresearch/wav2letter

Opensource
Offline nutzbar
Deutsche Modelle
WER: 4%

Espresso

https://github.com/freewym/espresso

Opensource
Offline nutzbar
Kein deutsches Modell

Nvidea OpenSeq2Seq

https://github.com/NVIDIA/OpenSeq2Seq

Opensource
Offline nutzbar
Kein Deutsches Modell

WER Vergleich 2017

Google (8%)
Microsoft (5.9%)
IBM (5.5%)
Apple (5%)
Baidu (16%)
Hound (5%)

Quelle:
https://askwonder.com/research/current-voice-recognition-word-error-rates-google-amazon-micr
osoft-ibm-apple-5b88trj0t

https://github.com/kaldi-asr/kaldi
http://kaldi-asr.org/doc/about.html
https://github.com/facebookresearch/wav2letter
https://github.com/freewym/espresso
https://github.com/NVIDIA/OpenSeq2Seq
https://askwonder.com/research/current-voice-recognition-word-error-rates-google-amazon-microsoft-ibm-apple-5b88trj0t
https://askwonder.com/research/current-voice-recognition-word-error-rates-google-amazon-microsoft-ibm-apple-5b88trj0t

Zwischenbericht WS2020/21

Seite 7 / 19 https://ds-maximum.de

Bisher aufgetretene Probleme

Vorüberlegung: Save-Storage / Moodle Integration

Eine initiale Feature-Idee für dieses Semester war es, dem Bot eine Moodle-Integration zu
implementieren, durch die der Nutzer Ereignisse in Moodle mitgeteilt und an Abgabetermine
erinnert werden kann. Moodle bietet hierfür eine REST-API:
https://docs.moodle.org/dev/Web_service_API_functions.

Problem 1: Login

Damit user-bezogene Daten abgerufen werden können muss der User sich in Moodle via
username + passwort einloggen. Dieser Login kann nicht über die Chatbot-Funktionalitäten
erfolgen, da Messenger in der Regel keine Passwort-Eingabe ermöglichen, was darin mündet,
dass die Credentials im Cleartext im Chatlog landen.

Lösung: Es benötigt ein Webformular, was den Moodle-Login sicher zentralisiert. Der Bot darf im
Chat nur den Link zum Login ausspielen.

Problem 2: Speicherung des Tokens

Der BeuthBot ist ein Studierenden-Projekt. Es gibt derzeit keinen Production-Server, der nicht
von Studierenden eingesehen werden kann. Die hohe Fluktuation an „Administratoren“ erzeugt
ein hohes Risiko für das „Leaken“ von gespeicherten Credentials.

Gefahren:

Böswilliger Entwickler (programmiert daten-abfluss)1.
Gutwilliger Entwickler (macht Programmierfehler)2.
Böswilliger Admin (transferiert/liest persistierte daten)3.
Gutwilliger Admin (dupliziert/transferiert daten als backups)4.
Böswilliger Nutzer (nutzt sicherheitslücken / programmierfehler)5.

Lösung 1: Das User-Token wird nur im RAM abgelegt

Das Token wird so nie auf die Festplatte geschrieben

[x] Böswilliger Entwickler (programmiert daten-abfluss)1.
[✓] Gutwilliger Entwickler (macht Programmierfehler)2.
[✓] Böswilliger Admin (transferiert/liest persistierte daten)3.
[✓] Gutwilliger Admin (dupliziert/transferiert daten als backups)4.
[✓] Böswilliger Nutzer (nutzt sicherheitslücken / programmierfehler)5.

Nachteil Lösung 1: Die Usability leidet stark, wenn der User sich ständig neu einloggen muss,
weil der Bot die Credentials beim Neustart vergisst. Vor allem für Erinnerungs-Features ist das
ein Showstopper.

https://docs.moodle.org/dev/Web_service_API_functions

Zwischenbericht WS2020/21

Seite 8 / 19

Lösung 2: Das User-Token wird nur persistiert, wenn die Datenbank geschrieben wird.

Die Daten werden beim Speichern mit einem One-Time-Token verschlüsselt. Beim nächsten
Start des Dienstes werden die Daten entschlüsselt und die persistente Kopie gelöscht

[x] Böswilliger Entwickler (programmiert daten-abfluss)1.
[✓] Gutwilliger Entwickler (macht Programmierfehler)2.
[x] Böswilliger Admin (transferiert/liest persistierte daten)3.
[✓] Gutwilliger Admin (dupliziert/transferiert daten als backups)4.
[✓] Böswilliger Nutzer (nutzt sicherheitslücken / programmierfehler)5.

Nachteil Lösung 2: Der One-Time-Key muss auch irgendwie gespeichert werden. Da dieser auch
für die Anwendung zugänglich sein muss liegt er gewissermaßen neben der verschlüsselten
Datei. Ein cleveres One-Time-Verfahren kann hier zwar dafür sorgen, dass fremder Zugriff auf
die Daten nicht unbemerkt bleibt - Gerade Backups können auf diese Art ganz gut abgesichert
werden indem der Key dort nicht gespeichert wird. Ein echter Schutz der Daten ist aber nicht
gegeben, spätestens der böswillige Admin wird einen Weg finden das Verfahren zu
manipulieren

Fazit: Wir haben uns gegen eine Speicherung von User-Credentials entschieden, Solange es kein
(professionell administriertes und zugriffsbeschränktes) Produktiv-Environment gibt.

Geplante Aufgaben

ID Name Priorität Initiale
Aufwandsschätzung
(in Tage)

Abhängig
von

Wird
verticketet

1 Fix: Gateway funktioniert nicht ohne Telegram-ID 1 1 Lukas
Danke

2 Rasa Update auf 2.0 1 1 Robert
Halwaß

3 Common Definitions und Funktionen für Bot-
Messenger-Clients in Library zusammenfassen

2 1 1 Dennis Walz

4 Discord ChatBot Implementation 2 2 1, 4 Dennis Walz

5 ErinnerungsFeature Command & Erinnerung 2 3 2 Dennis Walz

6 ErinnerungsFeature - Scrape Beuth Termine 3 1 6 Dennis Walz

7 Speech To Text 2 3 Robert
Halwaß

8 Text To Speech 2 3 Alexis
Popovski

9 ErinnerungsFeature - Scrape Moodle iCal export
(https://lms.beuth-hochschule.de/calendar/export.php)

3 1 6 Dennis Walz

10 Cross Platform Erkennung + Datenbank “telegram_id”
zu one:many relation

3 3 Lukas
Danke

11 Begrüßungsnachricht in Chatbot-Clients (listen auf
erst-kontakt) + Nachricht von Server

4 1 Rim Khreis

https://lms.beuth-hochschule.de/calendar/export.php

Zwischenbericht WS2020/21

Seite 9 / 19 https://ds-maximum.de

ID Name Priorität Initiale
Aufwandsschätzung
(in Tage)

Abhängig
von

Wird
verticketet

12 Website mit Präsentation aller BeuthBot-Resourcen
(Wiki, Telegram, Discourse, Github) und
Implmentation Chatbot

4 3 1, 4 Rim Khreis

13 Universelles Scraper & Download 4 3 Alexis
Popovski

14 Personalliste Gesamtverzeichnis 4 2 2 Lukas
Danke

BeuthBot

NLU

Services

Database

Speech

gateway

registry cache

deconcentrator-js rasa

weathermensa database

database-controller mongo-db

wav2letter modelsay.jsspeech-controller

User

telegram-bot discord-botwebsite-bot

BOT-12: Rasa 2.0 Update

Um die neusten Funktionen und Fixes von Rasa zu benutzen, ist ein Update von Version 1.6
auf 2.0 notwendig.

Zustänidigkeit Robert Halwaß

Initiale Schätzung 3 Tage

Programmiersprachen * Python

Frameworks/Libraries * Rasa

Services * NLU

Abhängigkeiten keine

Anforderungen * Kompatibilität mit bestehenden NLU-Trainingsdaten
erhalten
* Mögliche JSON- und MarkDown-Dateien in YAML-Datein
umwandeln

Zwischenbericht WS2020/21

Seite 10 / 19

Tasks * BOT-124: docker-compose.yml anpassen
* BOT-61: Chatito Kompatibiltät testen
* BOT-62: Config Anpassen
* BOT-63: Duckling updaten
* BOT-64: Modell neu trainieren
* BOT-116: Performance zwischen Version 1.6 und 2.0
vergleichen

BOT-30: Chatbot Library: Vereinheitlichung der Kommunikation von Javascript Chatbots mit
dem Gateway

Problem: Derzeit muss jede Anwendung, die den BHT-Bot als Chatbot implementieren möchte
selbst implementieren, wie die Kommunikation zwischen Anwendung und Gateway aussieht,
als auch die Schnittstellen Parameter in Anfrage und Antwort.
Um diese Implementationsredundanz zu verhindern, wird die Kommunikation und
Typedefinitionen in einer zentralen Javascript Bibliothek zusammengefasst.
Dies ermöglicht auch weitere geplante Funktionalitäten (wie der asymmetrische
Kommnuikationskanal zur Requestunabhängigen Server → Client Kommunikation) zentral
entwickelt und mittels Dependency Management schnell in die ChatClients überführt werden.

Initiale Schätzung 1

Technologien * Javascript
* Typescript

Abhängigkeiten keine

Anforderungen * Die Library lässt sich in Node und Browser Javascript einbinden * Die
Library nutzt semantische Versionierung zur Ermöglichung von Non-
Breaking-Updates * Die fertige Library lässt sich via Dependency-
Management (npm/yarn/webpack) userseitig einbinden und updaten * Die
Library enthält typisierte (typescript) Entitäten für Common Request und
Response Format(e) * Die Library enthält Unit-Tests für essentielle
Funktionen und Typen * Die Library ist dokumentiert, sowohl was
Nutzung, als auch Contribution angeht * Die Library verbessert die
Collaboration mittels Linting-Regeln und Workflow-Scripten

Tasks * BOT-33 Library Usage Dokumentieren
* BOT-34 Library in Discord Bot integrieren
* BOT-35 Library in Telegram Bot integrieren
* BOT-36 Library in Website integrieren
* BOT-31 Common Funktionalität / Use Cases identifizieren
* BOT-32 Typescript Library für Bot erstellen

BOT-37: Discord Integration des BHT-Bot

Discord ist eine weit verbreitete Kommunikatinsplattform, auf der Nutzer sich in „Servern“
vernetzen und dort meist thematisch organisiert kommunizieren können. Die Projektgruppe
des WS2020 ist selbst Teil der Zielgruppe des Discord-Messengers, wodurch sich diesese
Plattform besonders eignet um einen weiteren Chatservice (neben Telegram) an den BHT-Bot
anzubinden.
Eine Implementation des Chatbots innerhalb der Discord-Struktur steigert somit zum Einen die
Verbreitung(smöglichkeit) des BHT-Bot und bietet gleichzeitig eine gute Möglichkeit Debug-
Bot-Instanzen im präferierten Messenger zu betreiben.

Initiale Schätzung 2

Zwischenbericht WS2020/21

Seite 11 / 19 https://ds-maximum.de

Technologien * Javascript
* Docker

Abhängigkeiten * BOT-30

Anforderungen * Der Discourse Bot benutzt die zu entwickelnde zentralisierte
Library zur Gateway Kommunikation um Coderedundanz mit dem
Telegram Bot zu verhindern
* Der Discourse Bot kann (direkte) Nutzer-Nachrichten mittels
Gateway verarbeiten und antwortet dem User entsprechend
* Wenn keine Verbindung mit dem Gateway besteht oder Fehler
bei Anfragen auftreten reagiert der Chatbot durch Präsentation
einer hilfreichen Fehlermeldung
* Der Discourse Bot wird äquivalent zum Telgram Bot in das BHT-
Bot Universum mittels Docker + compose integriert
* Der Discourse Bot ist nicht Teil des BHT Bot, er wird als
paralleler, unabhängiger Service betrieben
* Alle Credentials und Urls/Ports werden aus dem Environment
bezogen, es gibt keine hard-coded Referenzen zu Strukturen des
BHT-Bot Gateways

Tasks * BOT-38 NodeJS Chatbot erstellen
* BOT-39 Docker Container + Compose für Container erstellen
* BOT-40 Bot Usage dokumentieren
* BOT-41 Bot Account anlegen für release
(https://discord.com/developers/applications)
* BOT-42 Bot Container in Beuth-Docker-Netzwerk einbinden
(release)

BOT-43: Erstellung eines Common-Frameworks für (Content-)Services

Services im BHT-Bot kommunizieren alle über REST-Schnittstellen. Diese sind alle als Express-
Anwendung mit JSON-Kommunikation implementiert, was für viel Code-Redundanz führt.
Gleichzeitig benutzt kein Service strukturierte Darstellungen der Schnittstellen, wie Anfragen
und Antworten zum Gateway, User Daten oder Rasa-Intents.
Ein spezieller, repititiver, Unterfall der Microservices sind solche, die Content bereitstellen.
Diese erhalten alle Nachrichten vom Gateway und senden ihre antworten auch dort wieder
zurück. Request- und Response sind durch das Gateway definiert, die resultierende Struktur
ist entsprechend für alle Contentservices prinzipiell Identisch.
Zur Vermeidung von Code-Redundanzen und Erleichterung des „Kick-Off“ eines neuen
Content-Services sollen die Common Funktionen und Entitäten in ein Framework gegossen
werden

Initiale Schätzung 1

Technologien * Javascript
* Typescript
* Dockerfile

Abhängigkeiten * BOT-37

https://discord.com/developers/applications

Zwischenbericht WS2020/21

Seite 12 / 19

Anforderungen * Das Framework implementiert eine NodeJS Express
REST-API, äquivalent zu den existierenden Content-
Services
* Das Framework lässt sich in NodeJS Anwendungen via
Dependency-Management einbinden (npm/yarn)
* Das Framework abstrahiert den (Express) Server und
dessen Routing, so dass ein Contentservices nur noch die
Response implementieren muss
* Das Framework implementiert die Schnittstelle zum
Datenbankservice um a) Userdaten zu
speichern/abzurufen und b) eigene Daten zu speicher und
abzurufen
* Das Framework füllt die “debug-history” der Requests
so, dass ein Service dieses Feature zwangsweise
implementiert / nutzt
* Requests, Responses, User, Rasa-Intents und ggf.
weitere Entitäten werden durch das Framework als
typisierte (typescript) Objekte definiert
* Das Framework wird in allen bestehenden und geplanten
Content-Services implementiert: Wetter, Mensa, Reminder
* Die Nutzung des Frameworks ist verständlich
dokumentiert
* Die Contribution wird mittels Linting, Dokumentation und
Build-Scripts erleichtert
* Das Framework nutzt types aus der (noch zu
entwickelnde) BHT-Bot Library um Redundanzen zwischen
Client-Bibliothem und Service-Framwork zu vermeiden

Tasks * BOT-44 Common Code, Features, Entitäten identifizieren
→ Use Case ableiten
* BOT-45 Typisiertes Javascript Framework erstellen
* BOT-46 Framework einbinden in Weather Service
* BOT-47 Framework einbinden in Mensa Service
* BOT-48 Framework einbinden in Reminder Service
* BOT-108 Framework dokumentieren
* BOT-117 Request History implementieren - Nutzung
enforcen

BOT-49: User-Messenger-Service: Nachricht proaktiv, requestunabhängig an Clients senden

Der BHT-Bot kann bisher nur passiv auf Anfragen warten und diese dann beantworten. Zur
Implementierung von asymmetrischer bzw. request-unabhängiger Kommunikation benötigt
der Bot einen neuen Service, der als Schnittstelle für diese Art von Kommunikation dient.

Initiale Schätzung 2.5

Technologien * Javascript
* Websockets
* Docker

Abhängigkeiten * BOT-30

Zwischenbericht WS2020/21

Seite 13 / 19 https://ds-maximum.de

Anforderungen * Der User-Messenger-Service kann eine Nachricht an einen User (via Client-
Unabhängiger User-ID) senden
* Wenn ein User mehrere Clients benutzt, wird die Nachricht an alle Clients
gesendet
* Wenn ein User (über längere Zeit) nicht erreichbar ist wird die Kennung
entfernt
* Wenn eine Nachricht nicht an einen User gesendet werden kann bekommt
der auslösende Service diese Information unterscheidbar zwischen a) Der
Nutzer ist gerade nicht erreichbar b) Der Nutzer ist dauerhaft nicht
erreichbar (gelöscht) c) Der Dienst ist generell unhealthy
* Der Service wird als Docker Image via docker-compose in die BHT-Bot
Infrastruktur integirert. Er ist Teil des BHT-Bot Repositories
* Die Funktionalität des Services wird auf Clientseite in die Common-
Chatbot-Library (BOT-30)
* Alle bestehenden ChatBot-Services werden an den Messenger Service
angebunden (Telegram, Discord)

Tasks * BOT-50 Websocket Registry für ChatBotClients
* BOT-51 REST-Service für Nachrichtenversand
* BOT-52 Implementation der Websocket-Registrierung in Common-Library
für Chatbots
* BOT-53 Implementierung der Common-Library-Websocket-Registrierung in
TelegramBot
* BOT-54 Implementierung der Common-Library-Websocket-Registrierung in
DiscordBot
* BOT-56 Dokumentation Usage Service
* BOT-110 Deployment / Release

BOT-55: Erinnerungs-Service: Behandelt „erinnere mich“ Befehle und erinnert bei Fälligkeit
autonom

Erinnerungen schedulen zu können ist ein typischer, weil praktischer, Anwendungsfall in
beliebten (Business) Kommunikations-Services wie Slack oder Mattermost. In beiden Fällen
wird diese Funktionalität durch die hauseigenen Reminder-Bots zur Verfügung gestellt.
Um die Featuredichte des BHT-Bot zu erhöhen wird ein Reminder-Service erstellt, durch den
identische Funktionalität wie bei genannten Diensten zur Verfügung stellt. Durch die Multi-
Messenger-Fähigkeit des BHT-Bot wird dieses Feature somit auch für User angeboten, deren
Kommunikations-Plattform keinen eigenen Reminder-Bot anbietet.
BeispielAnfragen:
* Erinnere mich am 22.10. an die Klausur in Mathe
* Erinnere mich jeden Donnerstag um 18 Uhr an den Ballettkurs
* Erinnere mich jedes Jahr am 01.01 an den Geburtstag meiner Mutter.
* Erinnere mich in 10 Tagen das Probeabonnement zu kündigen
* <Erinnere> <Zeitpunkt/Zeitspanne/Interval> <Thema>

Initiale Schätzung 3

Technologien * Javascript
* Docker
* Rasa
* MongoDB
* Cronjob

Zwischenbericht WS2020/21

Seite 14 / 19

Abhängigkeiten * BOT-43
* BOT-30
* BOT-12
* BOT-49

Anforderungen * Erfolgreiche „erinnere“-Anfragen werden vom Dienst
durch Bestätigung der erkannten und persistierten Daten
beantwortetoder
* Fehlerhafte “erinnere”-Anfragen werden durch ein Mini-
Usage-Tutorial beantwortet, damit der User seine Anfrage
korrigieren kann
* Erinnerungen werden auf user-ebene (clientunabhängig)
gespeichert, so dass ein User die gleichen Erinnerungen in
allen genutzten Clients zur Verfügung hat
* Erinnerungen werden bei Fälligkeit einmalig (an alle
clients des users) ausgespielt
* Wiederkehrende Erinnerungen werden ausgespielt und
anschließend an Hand des Intervals neu terminiert
* Der Nutzer kann Erinnerungen löschen
* Der Nutzer kann seine Erinnerungen anzeigen lassen
* Der Service wird als Docker Container via docker-
compose verwaltet und in das BHT-Repository integriert
* Der Service nutzt das (noch zu schaffende) Content-
Service-Framework
* Wenn der Reminder-Service nach einem Ausfall wieder
aktiv wird erinnert er nicht (einzeln) an alle Termine, die
zwischenzeitig fällig waren
* Der Serive ist in Hilfe-Texten des (Chat) BHT-Bots
integriert

Tasks * BOT-57 Rasa Anbindung „Erinnere“-Direktive
* BOT-58 Service Endpoint speichert Reminder und
Antwortet auf Probleme
* BOT-59 Scheduler/Cronjob prüft und sendet regelmäßig
fällige Erinnerungen
* BOT-60 Dokumentation Service Usage
* BOT-109 Deployment / Release
* BOT-112 Hilfe-Texte in (Chat)BHT-Bot help-command /
willkommensnachricht

BOT-82: Termin-Scraper, der automatisch Erinnerungen aus öffentlichen Quellen bezieht

Es gibt Termine, an die wollen alle Studierenden typischerweise erinnert werden, als auch
Termine, von denen die Universität möchte, dass die Studierende sich daran erinnern.
Typische Beispiele hierfür sind Rückmeldefristen und (Beuth-eigene) Feiertage.
Durch einen Webscraper sollen solche Termine aus (öffentlichen) Quellen automatisch
bezogen und dann an alle Studierenden ausgespielt werden.
Auch wenn dieses Feature für die meisten Studierenden interesssant sein dürfte, muss es eine
Möglichkeit zum Opt-Out geben. Ggf. ist sogar angezeigt, dass ein Opt-In erfolgt, was
allerdings den Nutzen des Features, vor allem aus Universitätssicht, mindern würde.

Initiale Schätzung 1

Technologien * Javascript
* Docker
* HTML-DOM

Zwischenbericht WS2020/21

Seite 15 / 19 https://ds-maximum.de

Abhängigkeiten * BOT-55

Anforderungen * Relevante Termine werden regelmäßig, automatisch bezogen
und als Erinnerung gespeichert
* User können “globale Erinnerungen” aktivieren oder
deaktivieren
* Das Feature ist resistent gegen Änderungen an den Domains
oder deren Struktur → Fallen gescrapete Dienste länger aus
wird dies reported
* Das Feature wird als nicht-eigenständig in den Reminder
Service integriert
* Das Feature ist bzgl. Opt-in oder Opt-out in den Hilfe-
Texten/Begrüßungsnachrichten des BHT-Bot dokumentiert

Tasks * BOT-83 Prüfen ob Opt-In (nötig ist) oder Opt-Out (möglich ist)
* BOT-84 Quellen mit relevanten Terminen zusammentragen -
auf Scrapebarkeit achten
* BOT-85 Scraping (mittels Scapring-Service) implementieren
* BOT-86 Termine aus Scraping in Erinnerungs Datenbank
überführen
* BOT-87 Rasa Direktive Opt-In oder Opt-Out implementieren
* BOT-88 Error-Reporting implementieren, bei Misslungenen
Scraping (über gewisse Zeit hinweg)
* BOT-114 Opt-In oder Opt-Out in Hilfe-Texten /
Willkommensnachricht dokumentieren

BOT-89: Moodle iCal import als Erinnerungen

Moodle ist die zentrale Online-Lernplattform der Beuth Hochschule. Kurse, die in Moodle
verwaltet werden erhalten in der Regel Abgabetermine für Aufgaben, die während des
Semesters fällig werden. Oftmals stehen diese Abgabetermine bereits zu Beginn des
Semesters in Moodle fest und können dort in einer Kalenderansicht betrachtet werden.
Moodle bietet außerdem eine Funktion zum Export der Eintragungen im eigenen Kalender:
https://lms.beuth-hochschule.de/calendar/export.php
Der User kann hier einen Link erzeugen, über den eine iCal Datei bezogen werden kann. Diese
Datei enthält die Semestertermine und kann entsprechend in Erinnerungen des Bots
umgewandelt werden

Initiale Schätzung 1

Technologien * Javascript
* iCal
* Rasa

Abhängigkeiten * BOT-55

https://lms.beuth-hochschule.de/calendar/export.php

Zwischenbericht WS2020/21

Seite 16 / 19

Anforderungen * Der User kann dem Bot seinen Moodle-Kalender-Export-
Link senden um einen Import auszulösen
* Die iCal Datei hinter dem Export-Link wird in Erinnerungs-
Einträge des Erinnerungs-Service umgewandelt
* Erinnerungen an Abgabetermine erfolgen zu Beginn des
Tages / zeitlich versetzt vor der Fälligkeit der Abgabe, nicht
zum im Kalender angegebenen Zeitpunkt
* Das Moodle-Import Feature wird nicht-eigenständig in den
Reminder-Service integriert
* Das Feature (und seine Nutzung) ist in der BHT-Bot Hilfe
gelistet

Tasks * BOT-90 Import Moodle Rasa Direktive
* BOT-91 Moodle iCal Download via zentralem Scaper
Service
* BOT-92 iCal Parsing und Persistierung als (sinnvolle)
Erinnerung
* BOT-111 Feature Release
* BOT-113 Hilfe-Texte in (Chat)BHT-Bot help-command /
willkommensnachricht

BOT-13: Speech To Text (STT)

Es soll ermöglicht werden, dass Benutzern neben Textnachrichten auch mittels
Sprachnachrichten mit dem BeuthBot kommunizieren können. Dabei sollen die
Sprachnachrichten mittels eines neuen Services in Text übersetzt werden und dann wie
andere Textnachrichten verarbeitet werden. Hierzui sollen 3 bekannte STT-Frameworks (Kaldi,
Mozilla Voice STT und Wav2Letter) getestet und vergleichen werden. Basierend darauf soll
eine Entscheidung getroffen werden, welches Framework schlussendlich in der Production-
Environment verwendet werden soll. Das Framework wird dann in Form eines neuen Micro-
Services in den BeuthBot integriert.

Zuständigkeit Robert Halwaß

Initiale Schätzung 3 Tage

Programmiersprachen * Python (Mozilla Voice STT)
* C++ (Kaldi, WAV2Letter)

Frameworks/Libraries * Kaldi
* Mozilla Voice STT
* WAV2Letter

Services * Speech

Abhängigkeiten * BOT-43: Erstellung eines Common-Frameworks
für (Content-)Services

Zwischenbericht WS2020/21

Seite 17 / 19 https://ds-maximum.de

Anforderungen * Die Übersetzung soll mittels neuronaler Netzte
geschehen
* Nur Sprachnachrichten auf Deutsch sollen
übersetzt werden
* Das verwendete Framework muss OpenSource
sein und Lokal auf dem BeuthBot-Server
ausführbar sein
* Es soll keine Model-Adapation durchgeführt
werden

Tasks

BOT-23: Komponente zur Umwandlung von Text in Sprache (TTS)

Neben der bereits vorhandenen Funktion Textnachrichten vom Beuthbot zu erhalten, sollen
Nutzer die Möglichkeit bekommen ebenfalls Sprachnachrichten zu empfangen. Hierfür wird
eine Komponente zur Konvertierung von Text in Sprache (Eng: „Text-To-Speech (TTS))
benötigt. Dieses Feature soll dem Nutzer in künftigen, dem Beuthbot hinzugefügten,
Messenger-Diensten zur Verfügung stehen. Zur Umsetzung soll optimalerweise von einer
Library Gebrauch gemacht werden, welche den Anforderungen gerecht wird.

Initiale Schätzung 1

Technologien Javascript

Abhängigkeiten keine

Anforderungen *Support für die deutsche Sprache
*Sprachnachrichten lassen sich als MP3- und WAV-Dateien
exportieren
*Das Feature ist bzgl. Opt-in oder Opt-out in den Hilfe-
Texten/Begrüßungsnachrichten des Beuthbots dokumentiert

Nice to Haves Sprachgeschwindigkeit und Stimme des Sprechers sind
konfigurierbar

Tasks * BOT-24 Recherche nach geeignetem Tool (TTS)
* BOT-25 Eigene Implementierung (TTS)
* BOT-98 Integration in Beuthbot

BOT-75: Begrüßungsnachricht

Neue Benutzer des BeuthBots sollen mit einer Begrüßungsnachricht empfangen werden.
Diese Nachricht soll die Features des BeuthBots vorstellen und einen Shortcut nennen,
welchen die Benutzer verwenden können, wenn sie Hilfe benötigen. Mit dem Shortcut listet
der BeuthBot nochmals all seine Features auf.

Initiale Schätzung 1

Technologien * JavaScript

Abhängigkeiten Keine

Zwischenbericht WS2020/21

Seite 18 / 19

Anforderungen * Die Begrüßungsnachricht erscheint nur für neue
Benutzer
* Das System sollte einen Shortcut zur
Wiedervorstellung der Features bereitstellen, falls
Benutzer Hilfe brauchen
* Das System muss in der Lage sein, auf die
Hilfeanfrage. des Benutzers mit Hilfe des Shortcuts
innerhalb von 1,5 Sekunden zu antworten
* Das System sollte gut dokumentiert sein
* Das System sollte leicht zu verstehen sein

Tasks * BOT-93 Client
* BOT-94 Server

BOT-74: Webseite

Um eine komplette Übersicht für alle genutzten BeuthBot-Resourcen zu haben, soll eine
Webseite zur Präsentation dieser Ressourcen erstellt werden. Zu den Ressourcen zählen das
Ziemer's Wiki, Telegram, Discord, Github und die Implementation des Chatbots.

Initiale Schätzung 3

Technologien * TypeScript
* JavaScript

Abhängigkeiten * BOT-10
* BOT-30

Anforderungen * Jeder Ressource wird ein Menüpunkt gewidmet,
welcher Infos & einen Link zu der jeweiligen
Ressource enthält
* Anschauliches & Einheitliches Design der Webseite
* leicht austauschbare Komponenten
* Das System sollte eine Ansicht innerhalb von 3
Sekunden laden
* Das System sollte gut dokumentiert sein
* Das System sollte leicht zu verstehen sein

Tasks * BOT-76 Webseite Einrichten
* BOT-77 Infos zum Wiki
* BOT-78 Infos zu Telegram
* BOT-79 Infos zu Discord
* BOT-80 Infos zu GitHub
* BOT-81 Implementation Chatbot

BOT-11: Universeller Scraper & Download

Der Beuthbot soll einen „universellen“ Web-Scraper beinhalten, der als Grundlage für künftige
Features dienen soll, die für konkrete Scraping-Funktionalitäten vorgesehen sind. Aufgrund
der hohen Diversität an Datenstrukturen unterschiedlicher Webseiten, soll dieser möglichst
abstrakte Funktionalitäten zur Extrahierung von Datensätzen bieten.

Initiale Schätzung 1

Technologien Javascript

Zwischenbericht WS2020/21

Seite 19 / 19 https://ds-maximum.de

Abhängigkeiten keine

Anforderungen *Daten lassen sich im JSON- und XML-Format
ausgeben
*Datensätze sind per HTML-Tags und CSS-
Selektoren extrahierbar
*Dateien einer Webseite lassen sich downloaden

Tasks * BOT-26 Recherche nach geeignetster Methode
(HTML-JSON)

Nutzungshinweis: Auf dieses vorliegende Schulungs- oder Beratungsdokument (ggf.) erlangt
der Mandant vertragsgemäß ein nicht ausschließliches, dauerhaftes, unbeschränktes,
unwiderrufliches und nicht übertragbares Nutzungsrecht. Eine hierüber hinausgehende, nicht
zuvor durch datenschutz-maximum bewilligte Nutzung ist verboten und wird urheberrechtlich
verfolgt.

	Zwischenbericht WS2020/21
	BeuthBot Project Group
	Gliederung
	Einleitung
	Tools
	Jitsi
	Telegram
	Discord
	Jira
	GitHub
	Ziemer's Wiki
	IDEs
	Sonstiges
	Postman

	Organisation
	Vorgefundener Stand
	Bot
	Gateway
	Registry
	Service
	API

	Aktueller Stand
	Der Bot war ständig nicht erreichbar
	Gateway funktionierte nicht ohne Telegram-ID
	Continous Deployment
	Text 2 Speech Recherche
	Speech 2 Text Recherche
	Mozilla Voice STT (DeepSpeech)
	Kaldi
	Wav2Letter
	Espresso
	Nvidea OpenSeq2Seq
	WER Vergleich 2017

	Bisher aufgetretene Probleme
	Vorüberlegung: Save-Storage / Moodle Integration
	Problem 1: Login
	Problem 2: Speicherung des Tokens
	Lösung 1: Das User-Token wird nur im RAM abgelegt
	Lösung 2: Das User-Token wird nur persistiert, wenn die Datenbank geschrieben wird.
	Fazit: Wir haben uns gegen eine Speicherung von User-Credentials entschieden, Solange es kein (professionell administriertes und zugriffsbeschränktes) Produktiv-Environment gibt.

	Geplante Aufgaben

