E datenschutz-maximum Version 23.11.2020 14:34, Seite 1 / 35

Zwischenbericht WS2020/21

https://wiki.ziemers.de/wiki/software/beuthbot/berichte/ws2020/zwischen Gedruckt 01.02.2026 07:03

Zwischenbericht WS2020/21

BeuthBot Projektgruppe

Lukas Danke
Robert Halwald
Rim Khreis
Alexis Popovski
Dennis Walz

Seite 2/ 35

Zwischenbericht WS2020/21

Einleitung

Chatbots sind ein logisches Produkt der heutigen Automatisierungsara. Sie konnen theoretisch flr fast
jedes Unternehmen nutzlich sein, da ein erheblicher Teil von Benutzeranfragen ahnlich sind und
wiederholt gestellt werden. Mit der schnellen Entwicklung des maschinellen Lernens stellen Chatbots
ein relevantes und aktuelles Thema dar, welches immer beliebter und nachgefragter wird. Weshalb
also nicht auch ein Chatbot der Beuth Hochschule fir Technik Berlin? Entwickelt von Studierenden, fur
Studierende. Somit konnen nicht nur die Mitarbeiter des Studierendenservice entlastet, sondern auch
kleine bis groBe Fragen der User schnell beantwortet werden. Ein intelligenter Chatbot, der per Text
und Sprache bedient werden kann, mittels kinstlicher Intelligenz antwortet und viele Features
anbietet, wie z.B. die automatische Erinnerung an wichtige Termine der Universitat.

Seite 3/35 https://ds-maximum.de

Zwischenbericht WS2020/21

Tools

In diesem Kapitel werden alle Tools aufgelistet und beschrieben, welche wahrend des Projektverlaufes
zum Einsatz kommen.

Jitsi

Jitsi ist ein OpenSource Video-Conferencing-Tool, welches privat von Herrn Ziermers gehostet wird.
Dadurch ist der Datenschutz gewahrleistet. Das Tool wird fir die regelmafBigen wochentlichen
digitalen Treffen zwischen dem Betreuer und dem Projektteam zum Austausch von Informationen und
Fragen genutzt.

Telegram

Telegram ist ein kostenloser, verschlusselter Text- und Sprachnachrichten-Dienst, welcher sowohl auf
mobilen Geraten als auch Desktop-Ansicht funktioniert. Auch Uber Telegram kommuniziert das
Projektteam Uber Textnachrichten mit dem Betreuer, falls, in den Tagen vor oder nach dem Meeting
in Jitsi, Fragen aufkommen, welche schnellstmoglich beantwortet werden mussen.

Discord

Discord ist ebenfalls ein kostenloser Onlinedienst mit Chat-, Sprachkonferenz- und Videokonferenz-
Funktion. Das Projektteam nutzt Discord, um sich, nach den wochentlichen Treffen mit dem Dozenten,
nochmal untereinander auszutauschen und auch an anderen Wochentagen zusammenzutun um sich
zu organisieren. Discord bietet neben der Instant-Messenging Funktion auch noch die Maglichkeit
persistente, themenbasierte Unter-Chats bzw. Raume zu eréffnen, so dass besprochene Inhalte trotz
der formlosen Kommunikation leicht und dauerhaft auffindbar sind.

Jira

Jira ist eine von Atlassian entwickelte Webanwendung, welche dem Projektmanagement bzw.
Aufgabenmanagement dient. In Jira verfasst das Projektteam die Anforderungen des Projekts in
kleineren Tasks, um diese wochentlich in konstanten Schritten abzuarbeiten. AuBerdem werden dort
bislang die Stundenaufwande der einzelnen Projektmitglieder dokumentiert.

Kernfuntionalitaten, die Jira abbildet sind die wochentlichen Sprints in Form eines Kanban Boards, der
Backlog und Zeitaufschreibung zur Kontrolle des Arbeitsumfangs durch den Dozierenden

Jira hat auBedem eine App, die es schafft alle Funktionen (die bisher gesucht wurden) in das Mobile
Interface zu UberfUhren, so dass es maglich wird unterwegs PM Tasks zu erledigen wie die
wochentliche Sprint Planung.

Seite 4 / 35

Zwischenbericht WS2020/21

GitHub

GitHub ist ein netzbasierter Dienst zur Versionsverwaltung fir Software-Entwicklungsprojekte. Er wird
fur die Zusammenfuhrung der Arbeitsergebnisse des Projektteams genutzt.

Durch die Nutzung von Github wird (im Gegensatz zum Einsatz des Beuth-Gitlabs) ermdglicht, dass
die Arbeitsergebnisse dieses Projekts auch fur auBenstehende verfligbar werden, wodurch ein aktiver
Beitrag zur Open Source Bewegung geleistet wird. Durch die Beteiligung an diesem Proejkt erhalten
Projektteilnehmende auf diese Art auch eine gewisse Art von 6ffentlicher Reputation.

Technische Dokumentation wird immer am entsprechenden Projekt-Teil, also dem entsprechenden
Repository angelegt. Dadurch findet sich die technische Dokumentation des Bots vor allem auf Github

Ziemer's Wiki

Im Ziemer's Wiki, welches auf DokuWiki basiert, befindet sich eine groBe Sammlung an Berichten,
Dokumentationen und Information zum BeuthBot und die Arbeit der vorherigen Semester an diesem.
Diese grolle Ansammlung dient dem Projektteam zur Einarbeitung in das Projekt bzw. dem BeuthBot,
aber auch zur Inspiration, wie sie bestimmte Dinge angehen und gestalten kdnnen. Des Weiteren halt
das Projektteam in Ziemer's Wiki allgemeine Notizen zum Uberblick, aber auch natirlich den
Zwischenbericht und andere Dokumentationen fest.

IDEs

Im folgenden werden die verschiedensten Entwicklungsumgebungen aufgelistet, welches jedes
Projektmitglied nach seinen Vorlieben und Praferenzen nutzt, um am Code des BeuthBot's zu arbeiten
und die Anforderungen umzusetzen.

e Visual Studio Code
e WebStorm / PHPStorm (Jetbrains Produkte)

Postman

Postman ist ein Programm zum Entwickeln, aber auch zum Testen von bereits bestehenden REST
API's. Mit diesem Tool kann das Projektteam die Antwort auf ihre Anfragen Uberprifen.

NPMJS

npmjs.com ist das Repository fur nodejs Anwendungen. Javascript Code, der von mehreren Services /
Modulen implementiert werden soll, wird daher Uber npmjs verteilt.

Seite 5/35 https://ds-maximum.de

Zwischenbericht WS2020/21

Organisation

Das Projektteam arbeitet teilweise nach der agilen Vorgehensweise, genauer gesagt nach Scrum. Ziel
bei der agilen Vorgehensweise ist, dass schon nach kurzer Zeit ein fertiges Arbeitspaket bzw. ein
Prototyp abgegeben wird. So erhalt das Projektteam schon friihzeitig ein Feedback des Dozenten und
kann mogliche Anderungen zeitnah im Projektverlauf beriicksichtigen.

Dafur nutzt das Projektteam unter andrem Jira. Dort wird das Product Backlog gepflegt. Das Product
Backlog enthalt alle Anforderungen und kann sich wahrend des Projektverlaufs stetig andern, da
Anforderungen hinzukommen, sich andern oder wegfallen kdnnen. Die Anforderungen werden in
einen einwdchigen Sprint aufgenommen. Ein Sprint ist die zur Verfugung gestellte Zeit, um die
gewahlten Anforderungen zu bearbeiten. Am Ende jedes Sprints sollten die Aufgaben umgesetzt sein.
So hat das Projektteam dann immer ein kleines Arbeitspaket vorzuweisen.

Nach jedem Sprint gibt es dann das Sprint Review. Im Sprint Review trifft sich das Projektteam mit
dem Dozenten, um die erbrachte Leistung des abgeschlossenen Sprints zu prasentieren, Feedback
einzuholen, mégliche Unklarheiten zu klaren und Ziele fur die folgende Woche zu besprechen. Das
Sprintreview findet jede Woche (Donnerstag 10:00) in Form eines Videochats mittels Jitsi statt. Zur
allgemeinen Kommunikation aulSerhalb der wochentlichen Rlucksprachen zwischen Studierenden und
Dozent wird Telegram verwendet, um kleinere Fragen zu klaren, welche nicht bis zum nachsten
Rucksprachetermin warten konnen. Da der BeuthBot zum Start des Projektes nur Telegram
unterstitze, erwies sich dies als logische Wahl.

Zur privaten Kommunikation unter den Studierenden wird Discord verwendet. Discord bietet den
Vorteil, dass sowohl Text-Chat als auch Voice- und Video-Chat mdglich sind. Dies bietet viel Flexibilitat
bei der Kommunikation innerhalb des Teams. Der Server wird privat gehostet, dadurch ist der
Datenschutz hier ebenfalls gewahrleistet. Viele der Studierenden haben auch bereits Erfahrung bei
der Verwendung von Discord, wodurch keine lange Einarbeitungszeit notwendig war. Zusatzlich wurde
sich auch dafur entschieden, den BeuthBot ebenfalls Uber Discord zuganglich zu machen.

Uber Discord findet auch die Sprint Retrospektive und das Sprint Planning jeden Donnerstag nach
dem Sprint Review statt. In der Sprint Retrospektive spricht das Projektteam Uber die Ereignisse, die
sie im Sprint gut oder schlecht fanden, die beibehalten, wegfallen oder mit denen sie beginnen
sollten. Es bietet fur jedes Teammitglied eine Mdglichkeit, Feedback an das gesamte Team zu geben.
Im Sprint Planning werden dann die Anforderungen ausgewahlt, die das Team im nachsten Sprint
bearbeiten wird.

Wahrend des Sprints findet auch das Daily Scrum statt. Das Team kommt beim Daily Scrum ein
weiteres Mal in der Woche, abgesehen vom Donnerstag, zusammen, um zu besprechen, was jedes
Mitglied gemacht hat, noch machen wird oder welche Hindernisse es hat.

Seite 6/ 35

Zwischenbericht WS2020/21

Vorgefundener Stand

Der Beuthbot besteht aus mehreren ineinandergreifenden Microservices, die Uber eine umfassende
APl miteinander kommunizieren. Durch diesen gewahlten Ansatz lassen sich jederzeit weitere
Microservices integrieren. Die Basis stellen folgende 4 Komponenten dar:

e Bot

Gateway
Registry
Services

Bot

Hierbei handelt es sich um eine Abstraktion der verfligbaren Chatbots unterstitzter Messaging-
Dienste. Der Nutzer interagiert mit diesem Microservice, indem er Anfragen stellt und Antworten des
Beuthbots erhalt.

Gateway

Das Gateway stellt das Herz des BeuthBots dar. Der Bot informiert das Gateway mit der vom User
empfangenen Nachricht, nutzt dann NLP Microservices, um die Bedeutung und Absicht des Nutzers zu
erkennen und informiert den entsprechenden Service, um dem Nutzer eine adaquate Antwort zu
liefern.

Registry

Nachdem die Absicht des Nutzers analysiert worden ist, informiert das Gateway die Registry, um die
Informationen zu erhalten, die der Nutzer benétigt. Darauffolgend verteilt die Registry die Anfrage an
den entsprechenden Service.

Service

Die Services liefern die seitens des Nutzers angefragten Daten. So liefert bspw. Der MensaService
Informationen zu aktuellen Menus, welche via diverser Parameter gefiltert warden (etwa nur
vegetarische Gerichte).

API

Die Mikroservices kommunizieren untereinander mittels einer API. Sie basiert auf einem Response-
Objekt, das die einzelnen Microservices durchlauft. Es besteht aus der anfanglichen Anfrage des
Nutzers, seiner Daten und der ihm erstellten Antwort.

Seite 7/ 35 https://ds-maximum.de

Zwischenbericht WS2020/21

BeuthBot \

X

User

Services \

database I { weather

l mensa

]

A
!

\
)

—
Database \ ﬁ

telegram-bot

3|

deconcentrator-js 1:(rasa

database-controller
mongo-db

l/

gateway

Seite 8/ 35

Zwischenbericht WS2020/21

Voruberlegung zu Features: Save-Storage / Moodle
Integration

Eine initiale Feature-ldee fur dieses Semester war es, dem Bot eine Moodle-Integration zu
implementieren, durch die der Nutzer Ereignisse in Moodle mitgeteilt und an Abgabetermine erinnert
werden kann. Moodle bietet hierflr eine REST-API:
https://docs.moodle.org/dev/Web_service_API_functions.

Problem 1: Login

Damit user-bezogene Daten abgerufen werden kbnnen muss der User sich in Moodle via username +
passwort einloggen. Dieser Login kann nicht Uber die Chatbot-Funktionalitaten erfolgen, da
Messenger in der Regel keine Passwort-Eingabe ermdglichen, was darin mundet, dass die Credentials
im Cleartext im Chatlog landen.

Losung: Es bendtigt ein Webformular, was den Moodle-Login sicher zentralisiert. Der Bot darf im Chat
nur den Link zum Login ausspielen.

Problem 2: Speicherung des Tokens

Der BeuthBot ist ein Studierenden-Projekt. Es gibt derzeit keinen Production-Server, der nicht von
Studierenden eingesehen werden kann. Die hohe Fluktuation an ,,Administratoren” erzeugt ein hohes
Risiko fur das , Leaken” von gespeicherten Credentials.

Gefahren:

Boswilliger Entwickler (programmiert daten-abfluss)

Gutwilliger Entwickler (macht Programmierfehler)

Boswilliger Admin (transferiert/liest persistierte daten)
Gutwilliger Admin (dupliziert/transferiert daten als backups)
Boswilliger Nutzer (nutzt sicherheitslicken / programmierfehler)

e whe

Losung 1: Das User-Token wird nur im RAM abgelegt

Das Token wird so nie auf die Festplatte geschrieben

. [x] Boswilliger Entwickler (programmiert daten-abfluss)

. [v] Gutwilliger Entwickler (macht Programmierfehler)

. [v] Bodswilliger Admin (transferiert/liest persistierte daten)

. [v] Gutwilliger Admin (dupliziert/transferiert daten als backups)

5. [v] Boswilliger Nutzer (nutzt sicherheitslicken / programmierfehler)

wN =

i

Nachteil Losung 1: Die Usability leidet stark, wenn der User sich standig neu einloggen muss, weil der
Bot die Credentials beim Neustart vergisst. Vor allem fur Erinnerungs-Features ist das ein
Showstopper.

Seite 9/ 35 https://ds-maximum.de

https://docs.moodle.org/dev/Web_service_API_functions

Zwischenbericht WS2020/21

Losung 2: Das User-Token wird nur persistiert, wenn die Datenbank geschrieben wird

Die Daten werden beim Speichern mit einem One-Time-Token verschlusselt. Beim nachsten Start des
Dienstes werden die Daten entschlusselt und die persistente Kopie geléscht

. [x] Boswilliger Entwickler (programmiert daten-abfluss)

. [v] Gutwilliger Entwickler (macht Programmierfehler)

. [x] Boswilliger Admin (transferiert/liest persistierte daten)

4. [v] Gutwilliger Admin (dupliziert/transferiert daten als backups)

5. [v]Boswilliger Nutzer (nutzt sicherheitslicken / programmierfehler)

wN =

Nachteil Losung 2: Der One-Time-Key muss auch irgendwie gespeichert werden. Da dieser auch flr
die Anwendung zuganglich sein muss liegt er gewissermalRen neben der verschlisselten Datei. Ein
cleveres One-Time-Verfahren kann hier zwar daflur sorgen, dass fremder Zugriff auf die Daten nicht
unbemerkt bleibt - Gerade Backups konnen auf diese Art ganz gut abgesichert werden indem der Key
dort nicht gespeichert wird. Ein echter Schutz der Daten ist aber nicht gegeben, spatestens der
boswillige Admin wird einen Weg finden das Verfahren zu manipulieren

Fazit: Wir haben uns gegen eine Speicherung von User-Credentials entschieden, Solange
es kein (professionell administriertes und zugriffsbeschranktes) Produktiv-Environment
gibt.

Seite 10/ 35

Zwischenbericht WS2020/21

Geplanter Stand

Praambel

Neben einigen Winschen der Projektleitung konnte die Projektgruppe eigene Schwerpunkte in die
Feature Planung einbringen. Die kommende Feature-Planung ist ein Resultat der folgenden
Uberlegungen

Content First

Der BHT-Bot besteht bisher aus lediglich zwei Services, die Content zur Verfiigung stellen: Mensa- und
Wetter-Service. Aufgrund der Covid19-Pandemie finden keine Prasenzveranstaltungen an der
Hochschule statt und in Folge dessen hat die Mensa geschlossen, der Bot-Service ist entsprechend
auch eingestellt. Defakto kann der BHT-Bot damit derzeit ausschlieBlich das Wetter ansagen. Fur uns
ist es daher umso wichtiger dieses Semester neuen Content zu erzeugen bzw. nutzbare Features in
den BHT-Bot zu integrieren, damit dieses Projekt Uberhaupt eine Daseinsberechtigung bekommt.

Hands-On & Dokumentation

Wenn man neu in ein Projekt kommt gibt es viel Dokumentation aufzuarbeiten, als auch
undokumentierte Zustande zu entdecken. Wir hatten Gelegenheit den BHT-Bot in einem Hands-On
Workshop von Lukas Dankwerth aus SoSe2020 vorgestellt zu bekommen. Im Workshop haben wir uns
neben all dem Guten, was die letzten Semester geschaffen haben (danke vor allem fur die docker-
compose zentralisierung der infrastruktur!) beispielsweise angeschaut a) Warum der Bot eine
Telegram-ID braucht in allen Requests b) Dass der Bot derzeit zwei fast identische Datenbankservices
hat, die zusammengefuhrt werden kénnten c) Dass die Services derzeit inkonsistenzen aufweisen, die
bis zu essentiellen Debugging-Strategien wie der Request-History reichen, die nicht gepflegt wurde d)
Dass Dokumentation auf verschiedene Projekte und Plattformen verteilt wurde.

Ohne einen persdnliche Hands-On-Workshop ist eins der groten Probleme um ins Projekt zu finden,
dass es verschiedene Stellen gibt, an denen Dokumentation, Code, Infrastruktur, etc. verteilt ist, aber
keine zentrale Stelle, die als ,Single Point of truth” registerartig auf die weiteren Quellen verweist.

Wir wollen diese Situation verbessern, indem wir falsche und fur uns nicht-nachvollziehbare
Dokumentation verbessern, Wikistrukturen bereinigen, eine Landing-Page fir den Bot unter einer
zentralen Bot-Domain verfugbar machen und Abldufe und Strukturen in Code gieRen.

Redundanter Code / Wartbarkeit der Microservices

Beim Studium der einzelnen Services wurde sichtbar, dass fast ausnahmslos jeder Service des BHT-
Bot die gleiche Grundstruktur hat: Alle Services stellen eine JSON-REST-Schnittstelle zur Verflgung,

die via NodeJS + Express Framework implementiert ist. Vergleicht man die Services, sieht man, dass
insbesondere Services, die Inhalte ausspielen sollen einer identischen Struktur folgen (mussen), dies
aber individuell handhaben. Dadurch ist der Boilerplate Code flr jeden Service unnétig hoch und

Seite 11/ 35 https://ds-maximum.de

Zwischenbericht WS2020/21

zugleich ist das Warten der Services bei Anderung von globalen Schnittstellen mit hohem
individuellen Aufwand verbunden. Wir wollen diese Common-Funktionalitaten identifizieren und in
zentralen Bibliotheken bzw. Frameworks bindeln.

Bei allem was wir tun und Planen qilt die alte Pfadfinder-Regel: ,Hinterlasse das Camp immer
aufgeraumter, als du es vorgefunden hast“. Das beinhalte tbeispielsweise auch die Wartung bzw.
Updates von bestehenden Dependencies wie express-js oder Rasa-NLP.

Qualitatsmanagement

Bisher sind alle Services lose miteinander verbunden, jeder Service implementiert die Kommunikation
fur sich selbst, die Integration erfolgt durch manuelles Deployment, es gibt keine Typisierung, keine
(automatischen) Regeln zur Collaboration, keine Versionierung, kein Unit-Testing, kein Monitoring, ..
Kurz gesagt: Der BHT-Bot hat bislang keine Form von Qualitatssicherung. Dadurch ergeben sich
natdrlich viele Baustellen, die wir, insbesondere auch angesichts unserers Anspruchs ,Inhalte in den
Bot zu bringen” kaum befriedigend erfullen konnen. Wir wollen dennoch einen Beitrag zur
Verbesserung der aktuellen Situation erbringen:

1. Wir schreiben typisierte Libraries, die eine zentrale Dokumentation der Kommunikation mit dem
Bot darstellt.

2. Alle Libraries und Frameworks werden durch Linting-Regeln in ein, fur alle Entwickler
einheitliches, Format gebracht

3. Alle Libraries und Frameworks haben automatische Unit-Tests, als auch Prafung der
Testabdeckung, wir verlangen mindestens 80% Testabdeckung, Ziel ist 100% zu erreichen

4. Wir wechseln vom bisherigen manuellen Deployment zu einer automatischen CI/CD Pipeline.
Diese Pipeline beinhaltet auch eine Testing-Stage, in die wir dieses Semester mindestens einen
Service anbinden werden

5. Releases werden durch Versionierte Git Tags erzeugt (und dann automatisch deployed) - Die
Tags werden semantisch versioniert

6. Neue Features werden via Pull Request in das Repository tbernommen. Nach Moglichkeit
werden die Requests durch ein Projektmitglied reviewd und freigegeben

Ubersicht geplante Tasks und Abhéngigkeiten

ID Name Prioritat Initiale Abhangigkeiten Wird
Aufwandsschatzung verticketet
(in Tage) von
BOT-16 Support mehrerer 1 1 Lukas Danke
Messenger-Typen durch
Umbau der
Benutzererkennung
BOT-12 Rasa Update auf 2.0 1 1 Robert
Halwal

Seite 12/ 35

Zwischenbericht WS2020/21

ID Name Prioritat Initiale Abhangigkeiten Wird
Aufwandsschatzung verticketet
(in Tage) von
BOT-30 Chatbot Library: 2 1 BOT-16 Dennis Walz
Vereinheitlichung der
Kommunikation von
Javascript Chatbots mit
dem Gateway
BOT-74 Webseite 2 3 BOT-16, BOT-30 Rim Khreis
BOT-49 User-Messenger-Service: 2 2.5 Dennis Walz
Nachricht proaktiv,
requestunabhangig an
Clients senden
BOT-37 Discord Integration 2 2 BOT-16, BOT-30 Dennis Walz
BOT-43 Erstellung eines Common- 2 1.5 Dennis Walz
Frameworks flr (Content-
)Services
BOT-13 Komponente zur 3 3 BOT-43 Robert
Umwandlung von Sprache Halwal
zu Text (STT)
BOT-23 Komponente zur 3 3 BOT-43 Alexis
Umwandlung von Text zu Popovski
Sprache (TTS)
BOT-55 Erinnerungs-Service: 3 3 BOT-12 Dennis Walz
Behandelt , erinnere mich*
Befehle und erinnert bei
Falligkeit autonom
BOT-82 Termin-Scraper, der 3 1 BOT-12, BOT-55 Dennis Walz
automatisch Erinnerungen
aus offentlichen Quellen
bezieht
BOT-89 Moodle iCal import als 3 1 BOT-12, BOT-55 Dennis Walz
Erinnerungen
BOT-75 BegruBungsnachricht 4 1 Rim Khreis
BOT-11 Universelles Scraper & 4 3 BOT-43 Alexis
Download Popovski
BOT-15 Personalliste der Beuht- 4 2 BOT-12, BOT-43 Lukas Danke
Hochschule im Beuthbot
abrufbar machen
Seite 13/ 35 https://ds-maximum.de

Zwischenbericht WS2020/21

Architektur

Die Architektur-Entscheidungen orientieren sich an der bisherigen Infrastruktur. Durch die
Verwendung der gleichen Programmiersprachen und Technologien wird Wartbarkeit gewahrleistet
und insbesondere die Abstraktion von Common-Funktionalitaten in Libraries begunstiget.

Dies bedeutet fur den BHT-Bot:

Alle Features werden als Microservice-Architektur konzipiert

Microservices werden via Docker Container betrieben

Docker Container werden via docker-compose orchestriert

e Microservices kommunizieren via REST-Schnittstellen innerhalb des Docker-Network
Services werden in Javascript geschrieben

Libraries und Frameworks werden in Typescript geschrieben

BeuthBot \
STT \ TTS \
% [stt-controller H wav2letter H model J ’ { tts-controller HﬂJ ’
User\ AN ad
/<A / NLU Reminder \ Us: ‘(Messenglngsarwce\
© Y
[website-bot ‘ [discord-bot } [telegram-bot ‘ { deconcentrator-js gateway —>[reminder-controller ‘ { UMS-Controller H Websocket

Services X base staff\
¥ ¥ 4 ¥
mensa weather personalliste database database controller reg\stry staff-controller
mongo- db

Seite 14/ 35

Zwischenbericht WS2020/21

Aufgaben Spezifikation

BOT-16: Support mehrerer Messenger-Typen durch Umbau der Benutzererkennung
Aktueller Stand:

Der BeuthBot unterstitzt aktuell nur eine Verwendung Uber Telegram. Die Telegram-ID des
Benutzers wird in der Datenbank gespeichert.
Diese wird dann verwendet, um individuelle Informationen zu dem Benutzer abrufen zu kénnen.

Geplanter Umbau:

In Zukunft sollen flr den BeuthBot mehrere Kontaktmdéglichkeit zur Verfligung gestellt werden.
Damit ein Benutzer aber auch unabhangig vom Messenger erkannt wird muss der BeuthBot
angepasst werden:

1. Umbau der Datenbank damit mehrere Messenger-IDs gespeichert werden kénnen

2. Umbau der Erkennung des Messengers

3. Vereinfachen der Erkennung, damit ein zukinfiger Support von neuen Messengern einfach und
schnell erfolgen kann.

Initiale Schatzung 3 Tage

Technologien * Javascript
* mongodb

Abhangigkeiten keine

Anforderungen * einzelne Speicherung der Telegram-ID aus der Datenbank
entfernen

* Neue Spalte zur Verwaltung aller Benutzer-IDs

* vereinfachter Einbau von neuen Messengern
gewahrleisten

* Abhangigkeit von der Telegram-ID entfernen

* Mehrere Messenger verfugbar machen

* Anmeldung eines neuen Benutzers

* Léschen eines Benutzers/Messengers

* Anmeldung eines neuen Messengers fur ein bestehenden
Benutzer

Tasks * BOT-20 - Umbau der Datenbank - Speicherung von
mehreren Accounts fur einen Benutzer
* BOT-21 - Anmeldung eines neuen Accounts fur einen
Benutzer
* BOT-22 - Loschen eines bestehenden Accounts fur einen
Benutzer
* BOT-97 - Methodik zur einfachen Erweiterung der
unterstutzten Messenger

Seite 15/ 35 https://ds-maximum.de

Zwischenbericht WS2020/21

BOT-12: Rasa 2.0 Update

Um die neusten Funktionen und Fixes von Rasa zu benutzen, ist ein Update von Version 1.6 auf 2.0
notwendig.

Initiale Schatzung 3 Tage
Technologien * Python
* Rasa
Abhangigkeiten keine
Anforderungen * Kompatibilitat mit bestehenden NLU-Trainingsdaten erhalten

* Mogliche JSON- und MarkDown-Dateien in YAML-Datein umwandeln

Tasks * BOT-62: Config Anpassen
* BOT-63: Duckling updaten
* BOT-64: Modell neu trainieren
* BOT-116: Performance zwischen Version 1.6 und 2.0 vergleichen

Seite 16 / 35

Zwischenbericht WS2020/21

BOT-30: Chatbot Library: Vereinheitlichung der Kommunikation von Javascript Chatbots mit dem

Gateway

Problem: Derzeit muss jede Anwendung, die den BHT-Bot als Chatbot implementieren mdéchte
selbst implementieren, wie die Kommunikation zwischen Anwendung und Gateway aussieht, als
auch die Schnittstellen Parameter in Anfrage und Antwort.

Um diese Implementationsredundanz zu verhindern, wird die Kommunikation und Typedefinitionen
in einer zentralen Javascript Bibliothek zusammengefasst.

Dies ermdglicht auch weitere geplante Funktionalitaten (wie der asymmetrische
Kommnuikationskanal zur Requestunabhangigen Server = Client Kommunikation) zentral
entwickelt und mittels Dependency Management schnell in die ChatClients Gberfuhrt werden.

Initiale Schatzung

Technologien

Abhangigkeiten

Anforderungen

Tasks

1 Tag

* Javascript
* Typescript

keine

* Die Library lasst sich in Node und Browser Javascript
einbinden

* Die Library nutzt semantische Versionierung zur
Ermdglichung von Non-Breaking-Updates

* Die fertige Library Iasst sich via Dependency-Management
(npm/yarn/webpack) userseitig einbinden und updaten

* Die Library enthalt typisierte (typescript) Entitaten fur
Common Request und Response Format(e)

* Die Library enthalt Unit-Tests fur essentielle Funktionen
und Typen

* Die Library ist dokumentiert, sowohl was Nutzung, als auch
Contribution angeht

* Die Library verbessert die Collaboration mittels Linting-
Regeln und Workflow-Scripten

* BOT-33 Library Usage Dokumentieren

* BOT-34 Library in Discord Bot integrieren

* BOT-35 Library in Telegram Bot integrieren

* BOT-36 Library in Website integrieren

* BOT-31 Common Funktionalitat / Use Cases identifizieren
* BOT-32 Typescript Library fur Bot erstellen

Seite 17 / 35

https://ds-maximum.de

Zwischenbericht WS2020/21

BOT-74: Webseite

Um eine komplette Ubersicht fiir alle genutzten BeuthBot-Resourcen zu haben, soll eine Webseite
zur Prasentation dieser Ressourcen erstellt werden. Zu den Ressourcen zahlen das Ziemer's Wiki,
Telegram, Discord, Github und die Implementation des Chatbots.

Initiale Schatzung 3 Tage

Technologien * TypeScript
* JavaScript

Frameworks/ Libraries * Angular
* Bootstrap

Abhangigkeiten *BOT-10
*BOT-30
Anforderungen * Jeder Ressource wird ein Abschnitt gewidmet, welcher

Infos & einen Link zu der jeweiligen Ressource enthalt
* Anschauliches, Einheitliches und responsive Design
der Webseite

* leicht austauschbare Komponenten

* Das System sollte eine Ansicht innerhalb von 3
Sekunden laden

* Das System sollte gut dokumentiert sein

* Das System sollte leicht zu verstehen sein

Tasks * BOT-76 Webseite Einrichten
* BOT-77 Infos zum Wiki
* BOT-78 Infos zu Telegram
* BOT-79 Infos zu Discord
* BOT-80 Infos zu GitHub
* BOT-81 Implementation Chatbot
* BOT-130 Notifications wenn Nachricht vom Chatbot
* BOT-131 Responsive

Seite 18/ 35

Zwischenbericht WS2020/21

BOT-49: User-Messenger-Service: Nachricht proaktiv, requestunabhangig an Clients senden

Der BHT-Bot kann bisher nur passiv auf Anfragen warten und diese dann beantworten. Zur
Implementierung von asymmetrischer bzw. request-unabhangiger Kommunikation bendtigt der Bot
einen neuen Service, der als Schnittstelle fur diese Art von Kommunikation dient.

Initiale Schatzung 2.5 Tage

Technologien

* Javascript
* Websockets

* Docker

Abhangigkeiten * BOT-30

Anforderungen * Der User-Messenger-Service kann eine Nachricht an einen User (via Client-
Unabhangiger User-ID) senden
* Wenn ein User mehrere Clients benutzt, wird die Nachricht an alle Clients
gesendet
* Wenn ein User (Uber langere Zeit) nicht erreichbar ist wird die Kennung entfernt
* Wenn eine Nachricht nicht an einen User gesendet werden kann bekommt der
auslosende Service diese Information unterscheidbar zwischen a) Der Nutzer ist
gerade nicht erreichbar b) Der Nutzer ist dauerhaft nicht erreichbar (geldscht) c)
Der Dienst ist generell unhealthy
* Der Service wird als Docker Image via docker-compose in die BHT-Bot
Infrastruktur integirert. Er ist Teil des BHT-Bot Repositories
* Die Funktionalitat des Services wird auf Clientseite in die Common-Chatbot-
Library (BOT-30)
* Alle bestehenden ChatBot-Services werden an den Messenger Service
angebunden (Telegram, Discord)

Tasks * BOT-50 Websocket Registry fur ChatBotClients
* BOT-51 REST-Service fur Nachrichtenversand
* BOT-52 Implementation der Websocket-Registrierung in Common-Library fur
Chatbots
* BOT-53 Implementierung der Common-Library-Websocket-Registrierung in
TelegramBot
* BOT-54 Implementierung der Common-Library-Websocket-Registrierung in
DiscordBot
* BOT-56 Dokumentation Usage Service
* BOT-110 Deployment / Release

Seite 19/ 35 https://ds-maximum.de

Zwischenbericht WS2020/21

BOT-37: Discord Integration

Discord ist eine weit verbreitete Kommunikatinsplattform, auf der Nutzer sich in ,Servern“
vernetzen und dort meist thematisch organisiert kommunizieren kénnen. Die Projektgruppe des
WS2020 ist selbst Teil der Zielgruppe des Discord-Messengers, wodurch sich diesese Plattform
besonders eignet um einen weiteren Chatservice (neben Telegram) an den BHT-Bot anzubinden.
Eine Implementation des Chatbots innerhalb der Discord-Struktur steigert somit zum Einen die
Verbreitung(smdoglichkeit) des BHT-Bot und bietet gleichzeitig eine gute Mdglichkeit Debug-Bot-
Instanzen im praferierten Messenger zu betreiben.

Initiale Schatzung

Technologien

Abhangigkeiten

Anforderungen

Tasks

2 Tage

* Javascript
* Docker

*BOT-30

* Der Discourse Bot benutzt die zu entwickelnde zentralisierte Library
zur Gateway Kommunikation um Coderedundanz mit dem Telegram
Bot zu verhindern

* Der Discourse Bot kann (direkte) Nutzer-Nachrichten mittels
Gateway verarbeiten und antwortet dem User entsprechend

* Wenn keine Verbindung mit dem Gateway besteht oder Fehler bei
Anfragen auftreten reagiert der Chatbot durch Prasentation einer
hilfreichen Fehlermeldung

* Der Discourse Bot wird aquivalent zum Telgram Bot in das BHT-Bot
Universum mittels Docker + compose integriert

* Der Discourse Bot ist nicht Teil des BHT Bot, er wird als paralleler,
unabhangiger Service betrieben

* Alle Credentials und Urls/Ports werden aus dem Environment
bezogen, es gibt keine hard-coded Referenzen zu Strukturen des
BHT-Bot Gateways

* BOT-38 Node)S Chatbot erstellen

* BOT-39 Docker Container + Compose fur Container erstellen

* BOT-40 Bot Usage dokumentieren

* BOT-41 Bot Account anlegen fur release
(https://discord.com/developers/applications)

* BOT-42 Bot Container in Beuth-Docker-Netzwerk einbinden (release)

Seite 20/ 35

https://discord.com/developers/applications

Zwischenbericht WS2020/21

BOT-43: Erstellung eines Common-Frameworks fur (Content-)Services

Services im BHT-Bot kommunizieren alle Gber REST-Schnittstellen. Diese sind alle als Express-
Anwendung mit JSON-Kommunikation implementiert, was flr viel Code-Redundanz fihrt.
Gleichzeitig benutzt kein Service strukturierte Darstellungen der Schnittstellen, wie Anfragen und
Antworten zum Gateway, User Daten oder Rasa-Intents.

Ein spezieller, repititiver, Unterfall der Microservices sind solche, die Content bereitstellen. Diese
erhalten alle Nachrichten vom Gateway und senden ihre antworten auch dort wieder zurtck.
Request- und Response sind durch das Gateway definiert, die resultierende Struktur ist
entsprechend flr alle Contentservices prinzipiell Identisch.

Zur Vermeidung von Code-Redundanzen und Erleichterung des ,Kick-Off“ eines neuen Content-
Services sollen die Common Funktionen und Entitaten in ein Framework gegossen werden

Initiale Schatzung 1 Tag
Technologien * Javascript
* Typescript
* Dockerfile
Abhangigkeiten * BOT-37
Anforderungen * Das Framework implementiert eine NodeJS Express REST-

API, dquivalent zu den existierenden Content-Services

* Das Framework lasst sich in NodeJS Anwendungen via
Dependency-Management einbinden (npm/yarn)

* Das Framework abstrahiert den (Express) Server und dessen
Routing, so dass ein Contentservices nur noch die Response
implementieren muss

* Das Framework implementiert die Schnittstelle zum
Datenbankservice um a) Userdaten zu speichern/abzurufen
und b) eigene Daten zu speicher und abzurufen

* Das Framework fillt die “debug-history” der Requests so,
dass ein Service dieses Feature zwangsweise implementiert /
nutzt

* Requests, Responses, User, Rasa-Intents und ggf. weitere
Entitaten werden durch das Framework als typisierte
(typescript) Objekte definiert

* Das Framework wird in allen bestehenden und geplanten
Content-Services implementiert: Wetter, Mensa, Reminder

* Die Nutzung des Frameworks ist verstandlich dokumentiert
* Die Contribution wird mittels Linting, Dokumentation und
Build-Scripts erleichtert

* Das Framework nutzt types aus der (noch zu entwickelnde)
BHT-Bot Library um Redundanzen zwischen Client-Bibliothem
und Service-Framwork zu vermeiden

Tasks * BOT-44 Common Code, Features, Entitaten identifizieren -
Use Case ableiten
* BOT-45 Typisiertes Javascript Framework erstellen
* BOT-46 Framework einbinden in Weather Service
* BOT-47 Framework einbinden in Mensa Service
* BOT-48 Framework einbinden in Reminder Service
* BOT-108 Framework dokumentieren
* BOT-117 Request History implementieren - Nutzung enforcen

Seite 21/ 35 https://ds-maximum.de

Zwischenbericht WS2020/21

BOT-13: Komponente zur Umwandlung von Sprache zu Text (STT)

Es soll ermdglicht werden, dass Benutzern neben Textnachrichten auch mittels Sprachnachrichten
mit dem BeuthBot kommunizieren kénnen. Dabei sollen die Sprachnachrichten mittels eines neuen
Services in Text Ubersetzt werden und dann wie andere Textnachrichten verarbeitet werden. Hierzui
sollen 3 bekannte STT-Frameworks (Kaldi, Mozilla Voice STT und Wav2Letter) getestet und
vergleichen werden. Basierend darauf soll eine Entscheidung getroffen werden, welches Framework
schlussendlich in der Production-Environment verwendet werden soll. Das Framework wird dann in
Form eines neuen Micro-Services in den BeuthBot integriert.

Initiale Schatzung

Programmiersprachen

Abhangigkeiten

Anforderungen

Tasks

3 Tage

* Python (Mozilla Voice STT)
* C++ (Kaldi, WAV2Letter)
* Kaldi

* Mozilla Voice STT

* WAV2Letter

* BOT-43: Erstellung eines Common-Frameworks fur
(Content-)Services

* Die Ubersetzung soll mittels neuronaler Netzte
geschehen

* Nur Sprachnachrichten auf Deutsch sollen Ubersetzt
werden

* Das verwendete Framework muss OpenSource sein
und Lokal auf dem BeuthBot-Server ausflhrbar sein

* Es soll keine Model-Adapation durchgefuhrt werden

* BOT-69 WAV2Letter testen

* BOT-70 Mozilla Voice testen

* BOT-73 Kaldi testen

* BOT-71 Framework aussuchen

* BOT-122 Micro-Service erstellen

* BOT-123 Sprachnachricht in WAV umwandeln

Seite 22 /35

Zwischenbericht WS2020/21

BOT-23: Komponente zur Umwandlung von Text zu Sprache (TTS)

Neben der bereits vorhandenen Funktion Textnachrichten vom Beuthbot zu erhalten, sollen Nutzer
die Maglichkeit bekommen ebenfalls Sprachnachrichten zu empfangen. Hierflr wird eine
Komponente zur Konvertierung von Text in Sprache (Eng: , Text-To-Speech (TTS)) bendtigt. Dieses
Feature soll dem Nutzer in kiinftigen, dem Beuthbot hinzugefligten, Messenger-Diensten zur
Verfligung stehen. Zur Umsetzung soll optimalerweise von einer Library Gebrauch gemacht werden,
welche den Anforderungen gerecht wird.

Initiale Schatzung
Technologien

Abhangigkeiten

Anforderungen

Nice to Haves

Tasks

1 Tag
Javascript

* BOT-43: Erstellung eines Common-Frameworks fur (Content-
)Services

* Support fur die deutsche Sprache

* Sprachnachrichten lassen sich als MP3- und WAV-Dateien
exportieren

* Das Feature ist bzgl. Opt-in oder Opt-out in den Hilfe-
Texten/BegruBungsnachrichten des Beuthbots dokumentiert

Sprachgeschwindigkeit und Stimme des Sprechers sind
konfigurierbar

* BOT-24 Recherche nach geeignetem Tool (TTS)
* BOT-25 Eigene Implementierung (TTS)
* BOT-98 Integration in Beuthbot

Seite 23/ 35

https://ds-maximum.de

Zwischenbericht WS2020/21

BOT-55: Erinnerungs-Service: Behandelt ,erinnere mich“ Befehle und erinnert bei Falligkeit autonom

Erinnerungen schedulen zu kénnen ist ein typischer, weil praktischer, Anwendungsfall in beliebten
(Business) Kommunikations-Services wie Slack oder Mattermost. In beiden Fallen wird diese
Funktionalitat durch die hauseigenen Reminder-Bots zur Verfligung gestellt.

Um die Featuredichte des BHT-Bot zu erh6hen wird ein Reminder-Service erstellt, durch den
identische Funktionalitat wie bei genannten Diensten zur Verfiigung stellt. Durch die Multi-
Messenger-Fahigkeit des BHT-Bot wird dieses Feature somit auch fur User angeboten, deren
Kommunikations-Plattform keinen eigenen Reminder-Bot anbietet.

BeispielAnfragen:

* Erinnere mich am 22.10. an die Klausur in Mathe

* Erinnere mich jeden Donnerstag um 18 Uhr an den Ballettkurs

* Erinnere mich jedes Jahr am 01.01 an den Geburtstag meiner Mutter.

* Erinnere mich in 10 Tagen das Probeabonnement zu kiindigen

* <Erinnere> <Zeitpunkt/Zeitspanne/Interval> <Thema>

Initiale Schatzung 3 Tage

Technologien * Javascript
* Docker
* Rasa
* MongoDB
* Cronjob

Abhangigkeiten *BOT-43
* BOT-30
* BOT-12
* BOT-49

Anforderungen * Erfolgreiche ,erinnere”-Anfragen werden vom Dienst durch
Bestatigung der erkannten und persistierten Daten
beantwortetoder
* Fehlerhafte “erinnere”-Anfragen werden durch ein Mini-
Usage-Tutorial beantwortet, damit der User seine Anfrage
korrigieren kann
* Erinnerungen werden auf user-ebene (clientunabhangig)
gespeichert, so dass ein User die gleichen Erinnerungen in
allen genutzten Clients zur Verfigung hat
* Erinnerungen werden bei Falligkeit einmalig (an alle clients
des users) ausgespielt
* Wiederkehrende Erinnerungen werden ausgespielt und
anschlieBend an Hand des Intervals neu terminiert
* Der Nutzer kann Erinnerungen l6schen
* Der Nutzer kann seine Erinnerungen anzeigen lassen
* Der Service wird als Docker Container via docker-compose
verwaltet und in das BHT-Repository integriert
* Der Service nutzt das (noch zu schaffende) Content-Service-
Framework
* Wenn der Reminder-Service nach einem Ausfall wieder aktiv
wird erinnert er nicht (einzeln) an alle Termine, die
zwischenzeitig fallig waren
* Der Serive ist in Hilfe-Texten des (Chat) BHT-Bots integriert

Seite 24/ 35

Zwischenbericht WS2020/21

Tasks * BOT-57 Rasa Anbindung ,Erinnere“-Direktive
* BOT-58 Service Endpoint speichert Reminder und Antwortet
auf Probleme
* BOT-59 Scheduler/Cronjob prift und sendet regelmalig
fallige Erinnerungen
* BOT-60 Dokumentation Service Usage
* BOT-109 Deployment / Release
* BOT-112 Hilfe-Texte in (Chat)BHT-Bot help-command /
willkommensnachricht

Seite 25/ 35 https://ds-maximum.de

Zwischenbericht WS2020/21

BOT-82: Termin-Scraper, der automatisch Erinnerungen aus offentlichen Quellen bezieht

Es gibt Termine, an die wollen alle Studierenden typischerweise erinnert werden, als auch Termine,
von denen die Universitat mochte, dass die Studierende sich daran erinnern. Typische Beispiele
hierfir sind Rickmeldefristen und (Beuth-eigene) Feiertage.

Durch einen Webscraper sollen solche Termine aus (6ffentlichen) Quellen automatisch bezogen und
dann an alle Studierenden ausgespielt werden.

Auch wenn dieses Feature fur die meisten Studierenden interesssant sein dirfte, muss es eine
Mdglichkeit zum Opt-Out geben. Ggf. ist sogar angezeigt, dass ein Opt-In erfolgt, was allerdings den
Nutzen des Features, vor allem aus Universitatssicht, mindern wirde.

Initiale Schatzung 1 Tag
Technologien * Javascript
* Docker
* HTML-DOM
Abhangigkeiten * BOT-55
Anforderungen * Relevante Termine werden regelmaRig, automatisch bezogen

und als Erinnerung gespeichert

* User kdnnen “globale Erinnerungen” aktivieren oder deaktivieren
* Das Feature ist resistent gegen Anderungen an den Domains
oder deren Struktur — Fallen gescrapete Dienste langer aus wird
dies reported

* Das Feature wird als nicht-eigenstandig in den Reminder Service
integriert

* Das Feature ist bzgl. Opt-in oder Opt-out in den Hilfe-
Texten/BegruBungsnachrichten des BHT-Bot dokumentiert

Tasks * BOT-83 Prufen ob Opt-In (natig ist) oder Opt-Out (madglich ist)
* BOT-84 Quellen mit relevanten Terminen zusammentragen - auf
Scrapebarkeit achten
* BOT-85 Scraping (mittels Scapring-Service) implementieren
* BOT-86 Termine aus Scraping in Erinnerungs Datenbank
uberflihren
* BOT-87 Rasa Direktive Opt-In oder Opt-Out implementieren
* BOT-88 Error-Reporting implementieren, bei Misslungenen
Scraping (Uber gewisse Zeit hinweg)

* BOT-114 Opt-In oder Opt-Out in Hilfe-Texten /
Willkommensnachricht dokumentieren

Seite 26 / 35

Zwischenbericht WS2020/21

BOT-89: Moodle iCal import als Erinnerungen

Moodle ist die zentrale Online-Lernplattform der Beuth Hochschule. Kurse, die in Moodle verwaltet
werden erhalten in der Regel Abgabetermine fir Aufgaben, die wahrend des Semesters fallig
werden. Oftmals stehen diese Abgabetermine bereits zu Beginn des Semesters in Moodle fest und
kénnen dort in einer Kalenderansicht betrachtet werden.

Moodle bietet auBerdem eine Funktion zum Export der Eintragungen im eigenen Kalender:
https://Ims.beuth-hochschule.de/calendar/export.php

Der User kann hier einen Link erzeugen, Uber den eine iCal Datei bezogen werden kann. Diese Datei
enthalt die Semestertermine und kann entsprechend in Erinnerungen des Bots umgewandelt

werden

Initiale Schatzung 1 Tag

Technologien * Javascript
*iCal
* Rasa

Abhangigkeiten * BOT-55

Anforderungen * Der User kann dem Bot seinen Moodle-Kalender-Export-Link
senden um einen Import auszulésen
* Die iCal Datei hinter dem Export-Link wird in Erinnerungs-
Eintrage des Erinnerungs-Service umgewandelt
* Erinnerungen an Abgabetermine erfolgen zu Beginn des
Tages / zeitlich versetzt vor der Falligkeit der Abgabe, nicht
zum im Kalender angegebenen Zeitpunkt
* Das Moodle-Import Feature wird nicht-eigenstandig in den
Reminder-Service integriert
* Das Feature (und seine Nutzung) ist in der BHT-Bot Hilfe
gelistet

Tasks * BOT-90 Import Moodle Rasa Direktive
* BOT-91 Moodle iCal Download via zentralem Scaper Service
* BOT-92 iCal Parsing und Persistierung als (sinnvolle)
Erinnerung
* BOT-111 Feature Release
* BOT-113 Hilfe-Texte in (Chat)BHT-Bot help-command /
willkommensnachricht

Seite 27 / 35 https://ds-maximum.de

https://lms.beuth-hochschule.de/calendar/export.php

Zwischenbericht WS2020/21

BOT-75: BegrufRungsnachricht

Neue Benutzer des BeuthBots sollen mit einer BegriBungsnachricht empfangen werden. Diese
Nachricht soll die Features des BeuthBots vorstellen und einen Shortcut nennen, welchen die
Benutzer verwenden kénnen, wenn sie Hilfe benétigen. Mit dem Shortcut listet der BeuthBot
nochmals all seine Features auf.

Initiale Schatzung 1 Tag

Technologien * JavaScript

Abhangigkeiten Keine

Anforderungen * Die BegruBungsnachricht erscheint nur flr neue Benutzer

* Das System sollte einen Shortcut zur Wiedervorstellung der
Features bereitstellen, falls Benutzer Hilfe brauchen

* Das System muss in der Lage sein, auf die Hilfeanfrage.
des Benutzers mit Hilfe des Shortcuts innerhalb von 1,5
Sekunden zu antworten

* Das System sollte gut dokumentiert sein

* Das System sollte leicht zu verstehen sein

Tasks * BOT-93 Client
*BOT-94 Server
* BOT-132 Server fragt alle anderen Server was sie kdnnen/
machen und gibt das dann aus

Seite 28/ 35

Zwischenbericht WS2020/21

BOT-11: Universeller Scraper & Download

Der Beuthbot soll einen ,universellen“ Web-Scraper beinhalten, der als Grundlage flr kiinftige
Features dienen soll, die flr konkrete Scraping-Funktionalitaten vorgesehen sind. Aufgrund der
hohen Diversitat an Datenstrukturen unterschiedlicher Webseiten, soll dieser maglichst abstrakte
Funktionalitaten zur Extrahierung von Datensatzen bieten.

Initiale Schatzung 1 Tag
Technologien Javascript
Abhangigkeiten * BOT-43: Erstellung eines Common-Frameworks fur

(Content-)Services

Anforderungen *Import von HTML- und XML-Dateien
*Daten lassen sich im JSON-Format exportieren
*Datensatze sind per HTML-Tags und CSS-Selektoren
extrahierbar
*Dateien einer Webseite lassen sich downloaden

Tasks * BOT-26 Recherche nach geeignetster Methode (HTML-
JSON)

Seite 29/ 35 https://ds-maximum.de

Zwischenbericht WS2020/21

BOT-15: Personalliste der Beuth-Hochschule im BeuthBot abrufbar machen

Dem Bot wird eines neues Feature hinzugefugt. Dieses Feature soll dem Benutzer des BeuthBots ein
Abfrage von Informationen Uber das Personal der Beuth Hochschule(BHT) ermdglichen

Ablauf:

Der Benutzer teilt dem Bot Uber einen Befehl mit (“Wer ist Max Mustermann?”, “Welche Person hat
die E-Mail mail@mail.com?”, “Welche Personen sitzen in Raum B001?”) , dass er Informationen Uber
eine oder mehrere Personen erhalten méchte. Der Bot prift dann die mitgegebenen Informationen
und gibt dann aus:

* Wenn er passende Daten in der Datenbank findet:

- Auflistung der angefragen Daten

* Wenn er keine passenden Daten finden kann:

- Meldung, das die Suche erfolglos war

Weitere Informationen:

Die Informationen Uber das Personal werden in einer Tabelle in der Datenbank gespeichert und von
dort abgerufen. Diese Informationen kénnen jederzeit aktuallisiert werden.

Spatere Erweiterungsmoglichkeiten:

Zunachst werden nur Entwickler Zugriff auf das Bearbeiten der Daten besitzen, fir eine spatere
Ausbaustufe ist aber eine Verwaltung der Daten mittels dafir berechtigter User vorstellbar.

Die Einbindung der Personaldaten kann Uber einen Scrapper auf der Seite der Personalliste auch
persepektivisch komplett automatisiert werden.

Die Daten in der Datenbank kdnnen mit neuen Informationen erweitert werden. (Personliches,
Sprechzeiten, etc.)

Initiale Schatzung 3 Tage
Technologien * Javascript
* mongodb
Abhangigkeiten keine
Anforderungen * Auslesen der Personalliste der BHT

* Einbau einer Speichermdglichkeit in der Datenbank
* Speichern der ausgelesenen Informationen in der
Datenbank

* Schnittstelle zur Bearbeitung der Daten erstellen

* Anlegen eines neuen Service ,Personalliste” im Bot
* Service zur Verwendung flr die Benutzer abrufbar
machen

Tasks * BOT-17 - initiales Auslesen der Personalliste
* BOT-18 - Abrufen der Information aus der Personalliste
* BOT-19 - Erkennung der Benutzeranfrage zur
Personensuche
* BOT-96 - Bearbeiten der Daten der Personalliste
* BOT-125 - Erstellen einer neuen Tabelle ,,Personalliste”
in der Datenbank

Seite 30/ 35

Zwischenbericht WS2020/21

Aktueller Stand

Der Bot war standig nicht erreichbar

Der Bot lauft via docker-compose in einer VM. Immer wenn der Bot nicht erreichbar war, startete er
neu sobald sich jemand in die VM einloggte und war dann auch wieder erreichbar. Der Grund dafur
war, dass docker-compose so konfiguriert war, dass die Container zwar neu starten sollten, aber nicht
sofort wenn sie absturzten (sondern in diesem fall dann eben beim Login durch einen docker-user).

Der L8sung bestand entsprechend in der Anderung der Configuration nach ,restart-always*.
https://github.com/beuthbot/beuthbot/pull/3

Gateway funktionierte nicht ohne Telegram-ID

Bei ersten Experimenten ist aufgefallen, dass wenn eine Nachricht an das Gateway geschickt wird und
diese keine valide Telegram-ID enthielt, wurde die Nachricht ignoriert. Dieses war entgegen der
Dokumentation, welche die Telegram-ID als optional definierte. Da dies fiir Testzwecke sehr hinderlich
ist und im Projektverlauf zwei weitere Messenger (Discord und eigene Webseite) hinzugefligt werden
sollen, galt dieses als eines der ersten Probleme die behoben werden sollten.

Durch eine Anpassung des Gateways bei der User-Abfrage wird eine valide Telegram-ID nicht
vorausgesetzt. https://github.com/beuthbot/gateway/pull/2

Continous Deployment

Continous Integration & Deployment ist ein wichtiger Pfeiler flr ein stabiles Production Environment.
Durch eine CI/CD Pipeline kann sichergestellt werden, dass das Deployment nachvollziehbar,
zuverlassig ausgefuhrt wird und bietet zugleich die Mdglichkeit Qualitatssicherungs-Mechanismen in
der Pipeline zu manifestieren.

Zu Beginn des Semesters wurde das Deployment manuell ausgeldst. Es gab mehrere Scripte, die
diesen Vorgang unterschiedlich angingen. Die Updatestrategie ist grundsatzlich ,,alle Repositories
updaten via git pull“ - leider gab es hier allerdings flaws, die dazu fihrten dass das lokale Repository
Lunrein“ wurde und nicht automatisch aktualisiert werden konnte.

Hinzu kam das Problem, dass die Ordnerstruktur unterschiedlichen Usern gehérte, immer denjenigen,
die das Update ausgefuhrt haben, bei dem die Dateien erstmals im Repository auftauchten. Dadurch
scheiterten Updates zusatzlich, wenn ,der falsche user” das update versuchte bzw. ,die falschen
dateien” im update aktualisiert wirden.

Wir haben via Github-Actions eine CI/CD Pipeline erstellt, die den Deployment Prozess in 3 Stages
ausfuhrt: Build, Test, Deploy. Die Test-Stage ist via Makefile angebunden, so dass Entwicklerinnen
neue Tests simpel in eine zentrale Stelle eintragen konnen. Das Makefile ist nun Single Point of Truth.
Die teilweise widersprichlichen Scripte von vorher wurden aufgeraumt

Code Anderungen im Repo (Pull Request): https://github.com/beuthbot/beuthbot/pull/4

Mithilfe eines Selfhosted-Runners welcher auf dem BeuthBot-Server installiert wurde, ist es jetzt

Seite 31/ 35 https://ds-maximum.de

https://github.com/beuthbot/beuthbot/pull/3
https://github.com/beuthbot/gateway/pull/2
https://github.com/beuthbot/beuthbot/pull/4

Zwischenbericht WS2020/21

maoglich diesen Prozess zu automatisieren. Sobald ein Git-Commit mit einem Versions-Tag gepusht
wird, wird dies vom Runner erkannt und der Deploy-Prozess wird angestoBen. Der Runner fuhrt die
Aktualisierung auf der VM des Bot durch.

Doku zur Runner Config:
https://github.com/beuthbot/beuthbot/blob/master/.documentation/github-runner.md

Public Domain

Es gab keine Public Domain zum Telegram Gateway. Diese brauchen wir aber um a) eine Landing
Page fur den Bot zu hosten und b) das Gateway von Chatbots ansprechen zu kénnen, die nicht in der
VM gehosted sind. Damit dies funktioniert wurde ein Proxy-Pass fur die Default-Domain von
https://beuthbot.ziemers.de/ angelegt. Damit wird jetzt folgender Curl Méglich: $ curl
https://beuthbot.ziemers.de/message -X POST -H ,,Content-Type: application/json” -data

. {\“text\,:\“Wie wird das Wetter morgen?\,}“

Text To Speech Recherche

e Say.js
o https://www.npmjs.com/package/say
o https://github.com/marak/say.js/
2. Web Speech API
o https://wiki.selfhtml.org/wiki/JavaScript/Web_Speech
3. Text2Speech
o https://www.npmjs.com/package/text-to-speech-file

Speech To Text Recherche

In diesem Projekt soll es ermdglicht werden, dass Nutzer ebenfalls Sprachnachrichten an den
BeuthBot schicken kénnen um mit diesem zu interagieren. Um dieses umzusetzen ist eine
sogenanntes Speech-To-Text-Programm erforderlich, welche Sprachnachrichten in Text
umwandelt. Diese umgewandelten Nachrichten kdnnen dann wie normale Textnachrichten vom
BeuthBot weiterverabeitet werden. Da es sich hierbei um ein aullerst kompliziertes technisches
Problem handelt, bei dem Ansatze mit statischen Algorithmen nicht anwendbar sind, werden
ausschlielllich Ansatze des DeepLearning angewendet. Neben vielen Cloud-Ldsungen von
namenhaften Anbietern wie Amazon und Google gibt es ebenfalls eine Reihe von OpenSource-
Losungen, welche privat gehostet werden. Dieses bietet mehrere Vorteile. Zum einen, fallen
keine Gebuhren fir die Nutzung an, da alle Berechnungen lokal auf dem BeuthBot-Server
ausgefuhrt werden. Zum anderen ist Datenschutz leichter umzusetzen, da alles lokal
verarbeitet wird und keine Daten an externe Services weitergegeben werden. Der Recherche
ergab eine Vielzahl an Losungen, jedoch sind nur drei fir das Projekt geeignet, da nur fur diese
ein vortrainiertes Modell fur die deutschen Sprache verfugbar ist. Diese sind:

Mozilla Voice STT (DeepSpeech)

e https://github.com/mozilla/DeepSpeech
e https://github.com/AASHISHAG/deepspeech-german
e Entwickler: Mozilla

Seite 32/ 35

https://github.com/beuthbot/beuthbot/blob/master/.documentation/github-runner.md
https://beuthbot.ziemers.de/
https://beuthbot.ziemers.de/message
https://www.npmjs.com/package/say
https://github.com/marak/say.js/
https://wiki.selfhtml.org/wiki/JavaScript/Web_Speech
https://www.npmjs.com/package/text-to-speech-file
https://github.com/mozilla/DeepSpeech
https://github.com/AASHISHAG/deepspeech-german

Zwischenbericht WS2020/21

e Opensource

e Offline nutzbar

e Viel Dokumentation

e Deutsches Modell

e WER: 15%

e Zukunft ungewiss
(https://www.ghacks.net/2020/08/24/the-future-of-mozillas-speech-to-text-project-deepsp
eech-is-uncertain/)

Kaldi

e https://github.com/kaldi-asr/kaldi
http://kaldi-asr.org/doc/about.html
http://zamia-speech.org/asr/
Entwickler: Kaldi

Opensource

e Offline nutzbar

e Deutsche Modelle

* WER: 8,44%

Wav2Letter

e https://github.com/facebookresearch/wav2letter
e http://zamia-speech.org/asr/

e Entwickler: Facebook Research

e Opensource

e Offline nutzbar

e Deutsche Modelle

e WER: 3,97%

Wahrend des Projekts gilt es, diese drei Losungen zu testen, miteinander zu vergleichen und
darauf basierend die beste Losung auszuwahlen und im BeuthBot zu implementieren.

Die STT-Programme ohne verfugbares deutsches Modell sind folgende:

Espresso

e https://github.com/freewym/espresso
e Entwickler: Freewym

e Opensource

e Offline nutzbar

¢ Kein deutsches Modell

OpenSeq2Seq

e https://github.com/NVIDIA/OpenSeq2Seq
¢ Entwickler: NVIDIA

e Opensource

e Offline nutzbar

» Kein Deutsches Modell

Seite 33/ 35 https://ds-maximum.de

https://www.ghacks.net/2020/08/24/the-future-of-mozillas-speech-to-text-project-deepspeech-is-uncertain/
https://www.ghacks.net/2020/08/24/the-future-of-mozillas-speech-to-text-project-deepspeech-is-uncertain/
https://github.com/kaldi-asr/kaldi
http://kaldi-asr.org/doc/about.html
http://zamia-speech.org/asr/
https://github.com/facebookresearch/wav2letter
http://zamia-speech.org/asr/
https://github.com/freewym/espresso
https://github.com/NVIDIA/OpenSeq2Seq

Zwischenbericht WS2020/21

Word Error Rate (WER)

Um die Qualitat eines STT-Modells zu messen, wird der sogenannte Word Error Rate (WER) Wert
verwendet. Dieser Wert gibt an, basierend auf dem Testdatensatz, wie viele Wérter prozentual
falsch erkannt werden. Zum Beispiel, wenn bei einem Satz, welcher 100 Wérter enthalt, 10
Worter falsch erkannt werden, dann betragt der WER-Wert 10%.

Unten befindet sich eine Auflistung von WER-Werten von kommerziellen STT-Diensten fur die
englische Sprache aus dem Jahre 2017. Darunter befindet sich ebenfalls die WER-Werte der
recherchierten OpenSoruce-Lésungen. Da alle Dienste unterschiedliche Datensatze zum
Training und Test verwenden, sind diese Ergebnisse nicht komplett vergleichbar, aber sie bieten
eine grundsatzliche Ubersicht tiber die Performance der OpenSource-Lésungen.

* Google (8%)

Microsoft (5.9%)

IBM (5.5%)

Apple (5%)

Baidu (16%)

Hound (5%)

Mozilla Voice STT (15%)
Kaldi (8,44%)
Wav2Letter (3,97%)

Quelle:
https://askwonder.com/research/current-voice-recognition-word-error-rates-google-amazon-micr
osoft-ibm-apple-5b88trjot

DokuWiki Plugins

edittable

StandartmaRig werden im Ziemer's-Wiki alle Tabellen mittels MarkDown angelegt. Da dieses
jedoch besonders bei groRen Tabellen sehr fehleranfallig ist, wurde das edittable-Plugin
installiert. Dieses erlaubt es mittels einer grafischen Benutzeroberflache Tabellen anzulegen
und zu bearbeiten. So entstandene Tabellen werden dann als normale MarkDown-Tabellen im
Wiki abgelegt. Dieses erleichterte das Arbeiten mit Tabellen ungemein.
https://www.dokuwiki.org/plugin:edittable

PageBreak

Die finale Abgabe des Zwischenberichtes sollte in Form eines PDFs abgeben werden. Das
Ziemer's-Wiki hatte bereits das DW2PDF-Plugin installiert, welches es auf einfache Weise
ermoglicht jede beliebige Wiki-Seite als PDF zu exportieren. Hierbei ergab sich jedoch das
Problem, dass alle Kapital ohne grolte Abstande hintereinander in das PDF geschrieben wurden,
welches die Ubersichtlichkeit stark beeintrachtigt hat. Um dieses Problem zu ldsen, wurde das
PageBreak-Plugin im Ziemers-Wiki installiert. Dieses erlaubt es, mittels des pagebreak-Tags,
dem DW2PDF-Plugin mitzuteilen wann ein Seitenumbruch passieren. Damit konnten wir nach

Seite 34/ 35

https://askwonder.com/research/current-voice-recognition-word-error-rates-google-amazon-microsoft-ibm-apple-5b88trj0t
https://askwonder.com/research/current-voice-recognition-word-error-rates-google-amazon-microsoft-ibm-apple-5b88trj0t
https://www.dokuwiki.org/plugin:edittable

Zwischenbericht WS2020/21

jedem Kapitel und Feature-Tabelle einen Seitenumbruch hinzufigen. Dies hat die
Ubersichtlichkeit des Zwischenberichtes deutlich erhoht.
https://www.dokuwiki.org/plugin:pagebreak

Nutzungshinweis: Auf dieses vorliegende Schulungs- oder Beratungsdokument (ggf.) erlangt
der Mandant vertragsgemals ein nicht ausschlieBliches, dauerhaftes, unbeschranktes,
unwiderrufliches und nicht Ubertragbares Nutzungsrecht. Eine hieruber hinausgehende, nicht
zuvor durch datenschutz-maximum bewilligte Nutzung ist verboten und wird urheberrechtlich

verfolgt.

Seite 35/ 35 https://ds-maximum.de

https://www.dokuwiki.org/plugin:pagebreak

	Zwischenbericht WS2020/21
	BeuthBot Projektgruppe

	Einleitung
	Tools
	Jitsi
	Telegram
	Discord
	Jira
	GitHub
	Ziemer's Wiki
	IDEs
	Postman
	NPMJS

	Organisation
	Vorgefundener Stand
	Bot
	Gateway
	Registry
	Service
	API

	Vorüberlegung zu Features: Save-Storage / Moodle Integration
	Problem 1: Login
	Problem 2: Speicherung des Tokens
	Lösung 1: Das User-Token wird nur im RAM abgelegt
	Lösung 2: Das User-Token wird nur persistiert, wenn die Datenbank geschrieben wird
	Fazit: Wir haben uns gegen eine Speicherung von User-Credentials entschieden, Solange es kein (professionell administriertes und zugriffsbeschränktes) Produktiv-Environment gibt.

	Geplanter Stand
	Präambel
	Content First
	Hands-On & Dokumentation
	Redundanter Code / Wartbarkeit der Microservices
	Qualitätsmanagement

	Übersicht geplante Tasks und Abhängigkeiten
	Architektur
	Aufgaben Spezifikation
	Aktueller Stand
	Der Bot war ständig nicht erreichbar
	Gateway funktionierte nicht ohne Telegram-ID
	Continous Deployment
	Public Domain
	Text To Speech Recherche
	Speech To Text Recherche
	Mozilla Voice STT (DeepSpeech)
	Kaldi
	Wav2Letter
	Espresso
	OpenSeq2Seq
	Word Error Rate (WER)

	DokuWiki Plugins
	edittable
	PageBreak

