ﬁ datenschutz-maximum Version 22.11.2020 20:19, Seite 1/ 19

Geplanter Stand

Praambel

Neben einigen wunschen der Projektleitung konnte die Projektgruppe eigene Schwerpunkte in die
Feature Planung einbringen. Die nachfolgende Feature-Planung ist ein resultat der folgenden
Uberlegungen

Content First

Der BHT-Bot besteht bisher aus lediglich zwei Services, die Content zur Verfiigung stellen: Mensa- und
Wetter-Service. Aufgrund der Covid19-Pandemie findet keine Prasenzveranstaltungen an der
Hochschule statt und in Folge dessen hat die Mensa geschlossen, der Bot-Service ist entsprechend
auch eingestellt. Defakto kann der BHT-Bot damit derzeit ausschlieBlich das Wetter ansagen. Fur uns
ist es daher umso wichtiger dieses Semester neuen Content zu erzeugen bzw. nutzbare Features in
den BHT-Bot zu integrieren, damit dieses Projekt Uberhaupt eine Daseinsberechtigung bekommt.

Redundanter Code / Wartbarkeit der Microservices

Beim Studium der einzelnen Services wurde sichtbar, dass fast ausnahmslos jeder Service des BHT-
Bot die gleiche Grundstruktur hat: Alle Services stellen eine JSON-REST-Schnittstelle zur Verfugung,
die via NodeJS + Express Framework implementiert ist. Vergleicht man die Services, sieht man, dass
insbesondere Services, die Inhalte ausspielen sollen einer identischen Struktur folgen (mussen), dies
aber individuell handhaben. Dadurch ist der Boilerplate Code fur jeden Service unnétig hoch und
zugleich ist das Warten der Services bei Anderung von globalen Schnittstellen mit hohem
individuellen Aufwand verbunden. Wir wollen diese Common-Funktionalitaten identifizieren und in
zentralen Bibliotheken bzw. Frameworks bindeln.

Qualitatsmanagement

Bisher sind alle Services lose miteinander verbunden, jeder Service implementiert die Kommunikation
fur sich selbst, die Integration erfolgt durch manuelles Deployment, es gibt keine Typisierung, keine
(automatischen) Regeln zur Collaboration, keine Versionierung, kein Unit-Testing, kein Monitoring, ..
Kurz gesagt: Der BHT-Bot hat bislang keine Form von Qualitatssicherung. Dadurch ergeben sich
naturlich viele Baustellen, die wir, insbesondere auch angesichts unserers Anspruchs ,Inhalte in den
Bot zu bringen” kaum befriedigend erfullen kénnen. Wir wollen dennoch einen Beitrag zur
Verbesserung der aktuellen Situation erbringen:

1. Wir schreiben typisierte Libraries, die eine zentrale Dokumentation der Kommunikation mit dem
Bot darstellt.

2. Alle Libraries und Frameworks werden durch Linting-Regeln in ein, fur alle Entwickler
einheitliches, Format gebracht

https://wiki.ziemers.de/wiki/software/beuthbot/berichte/ws2020/zwischen/geplanter-stand-preambel?rev=1606072748 Gedruckt
01.02.2026 10:55



Geplanter Stand

3. Alle Libraries und Frameworks haben automatische Unit-Tests, als auch Prifung der
Testabdeckung, wir verlangen mindestens 80% Testabdeckung, Ziel ist 100% zu erreichen

4. Wir wechseln vom bisherigen manuellen Deployment zu einer automatischen CI/CD Pipeline.
Diese Pipeline beinhaltet auch eine Testing-Stage, in die wir dieses Semester mindestens einen
Service anbinden werden

5. Releases werden durch Versionierte Git Tags erzeugt (und dann automatisch deployed) - Die
Tags werden semantisch versioniert

6. Neue Features werden via Pull Request in das Repository Ubernommen. Nach Méglichkeit
werden die Requests durch ein Projektmitglied reviewd und freigegeben

Hands-On & Dokumentation

Wenn man neu in ein Projekt kommt gibt es viel Dokumentation aufzuarbeiten, als auch
undokumentierte Zustande zu entdecken. Wir hatten Gelegenheit den BHT-Bot in einem Hands-On
Workshop von Lukas Dankwerth aus S05e2020 zu bekommen.

Ubersicht geplante Tasks und Abhéngigkeiten

ID Name Prioritat Initiale Abhangigkeiten Wird
Aufwandsschatzung verticketet
(in Tage) von
BOT-16 Support mehrerer 1 1 Lukas Danke
Messenger-Typen durch
Umbau der
Benutzererkennung
BOT-12 Rasa Update auf 2.0 1 1 Robert
Halwal®
BOT-30 Chatbot Library: 2 1 BOT-16 Dennis Walz

Vereinheitlichung der
Kommunikation von
Javascript Chatbots mit
dem Gateway

BOT-74 Webseite 2 3 BOT-16, BOT-30 Rim Khreis

BOT-49 User-Messenger-Service: 2 2.5 Dennis Walz
Nachricht proaktiv,
requestunabhangig an
Clients senden

BOT-37 Discord Integration 2 2 BOT-16, BOT-30 Dennis Walz

BOT-43 Erstellung eines Common- 2 1.5 Dennis Walz
Frameworks fur (Content-
)Services

BOT-13 Komponente zur 3 3 BOT-43 Robert
Umwandlung von Sprache Halwal

zuU Text (STT)

Seite 2 /19



Geplanter Stand

verticketet
von

Alexis
Popovski

Dennis Walz

Dennis Walz

Dennis Walz

Rim Khreis

Alexis
Popovski

Lukas Danke

ID Name Prioritat Initiale Abhangigkeiten Wird
Aufwandsschatzung
(in Tage)

BOT-23 Komponente zur 3 3 BOT-43
Umwandlung von Text zu
Sprache (TTS)

BOT-55 Erinnerungs-Service: 3 3 BOT-12
Behandelt ,,erinnere mich“
Befehle und erinnert bei
Falligkeit autonom

BOT-82 Termin-Scraper, der 3 1 BOT-12, BOT-55
automatisch Erinnerungen
aus offentlichen Quellen
bezieht

BOT-89 Moodle iCal import als 3 1 BOT-12, BOT-55
Erinnerungen

BOT-75 BegruBungsnachricht 4 1

BOT-11 Universelles Scraper & 4 3 BOT-43
Download

BOT-15 Personalliste der Beuht- 4 2 BOT-12, BOT-43
Hochschule im Beuthbot
abrufbar machen

Architektur

% 5T\ s\
/User\ istt-contro\li Hwavzletter Hmodel ‘ ’ ﬁs-contml\er Hﬂl
/<A / NLU ~ Minder U‘se@iissengingService\x
lwebsite~bot ‘ ldwscord-bot J itelegram-bot ‘ {deconcentratows gatewayv\ﬂ reminder-controller ‘ {UMS-ControHer HWebsocket ‘
W Da base \

N —
database-controller
mongo-db
Ll

Aufgaben Spezifikation

BOT-16: Support mehrerer Messenger-Typen durch Umbau der Benutzererkennung

Seite 3/19

https://ds-maximum.de



Geplanter Stand

Aktueller Stand:

Der BeuthBot unterstitzt aktuell nur eine Verwendung tUber Telegram. Die Telegram-ID des
Benutzers wird in der Datenbank gespeichert.
Diese wird dann verwendet, um individuelle Informationen zu dem Benutzer abrufen zu kénnen.

Geplanter Umbau:

In Zukunft sollen fir den BeuthBot mehrere Kontaktmdglichkeit zur Verfiagung gestellt werden.
Damit ein Benutzer aber auch unabhangig vom Messenger erkannt wird muss der BeuthBot
angepasst werden:

1. Umbau der Datenbank damit mehrere Messenger-IDs gespeichert werden kénnen

2. Umbau der Erkennung des Messengers

3. Vereinfachen der Erkennung, damit ein zukinfiger Support von neuen Messengern einfach und
schnell erfolgen kann.

Initiale Schatzung 3 Tage

Technologien * Javascript
* mongodb

Abhangigkeiten keine

Anforderungen * einzelne Speicherung der Telegram-ID aus der Datenbank
entfernen

* Neue Spalte zur Verwaltung aller Benutzer-IDs

* vereinfachter Einbau von neuen Messengern
gewabhrleisten

* Abhangigkeit von der Telegram-ID entfernen

* Mehrere Messenger verfligbar machen

* Anmeldung eines neuen Benutzers

* Loschen eines Benutzers/Messengers

* Anmeldung eines neuen Messengers fur ein bestehenden
Benutzer

Tasks * BOT-20 - Umbau der Datenbank - Speicherung von
mehreren Accounts flr einen Benutzer
* BOT-21 - Anmeldung eines neuen Accounts flr einen
Benutzer
* BOT-22 - Loéschen eines bestehenden Accounts flr einen
Benutzer
* BOT-97 - Methodik zur einfachen Erweiterung der
unterstutzten Messenger

Seite 4 /19



Geplanter Stand

BOT-12: Rasa 2.0 Update

Um die neusten Funktionen und Fixes von Rasa zu benutzen, ist ein Update von Version 1.6 auf 2.0
notwendig.

Initiale Schatzung 3 Tage
Technologien * Python
* Rasa
Abhangigkeiten keine
Anforderungen * Kompatibilitat mit bestehenden NLU-Trainingsdaten erhalten

* Mogliche JSON- und MarkDown-Dateien in YAML-Datein umwandeln

Tasks * BOT-62: Config Anpassen
* BOT-63: Duckling updaten
* BOT-64: Modell neu trainieren
* BOT-116: Performance zwischen Version 1.6 und 2.0 vergleichen

Seite 5/19 https://ds-maximum.de



Geplanter Stand

BOT-30: Chatbot Library: Vereinheitlichung der Kommunikation von Javascript Chatbots mit dem

Gateway

Problem: Derzeit muss jede Anwendung, die den BHT-Bot als Chatbot implementieren mdéchte
selbst implementieren, wie die Kommunikation zwischen Anwendung und Gateway aussieht, als
auch die Schnittstellen Parameter in Anfrage und Antwort.

Um diese Implementationsredundanz zu verhindern, wird die Kommunikation und Typedefinitionen
in einer zentralen Javascript Bibliothek zusammengefasst.

Dies ermdglicht auch weitere geplante Funktionalitaten (wie der asymmetrische
Kommnuikationskanal zur Requestunabhangigen Server = Client Kommunikation ) zentral
entwickelt und mittels Dependency Management schnell in die ChatClients Gberfuhrt werden.

Initiale Schatzung

Technologien

Abhangigkeiten

Anforderungen

Tasks

1 Tag

* Javascript
* Typescript

keine

* Die Library lasst sich in Node und Browser Javascript
einbinden

* Die Library nutzt semantische Versionierung zur
Ermdglichung von Non-Breaking-Updates

* Die fertige Library Iasst sich via Dependency-Management
(npm/yarn/webpack) userseitig einbinden und updaten

* Die Library enthalt typisierte (typescript) Entitaten fur
Common Request und Response Format(e)

* Die Library enthalt Unit-Tests fur essentielle Funktionen
und Typen

* Die Library ist dokumentiert, sowohl was Nutzung, als auch
Contribution angeht

* Die Library verbessert die Collaboration mittels Linting-
Regeln und Workflow-Scripten

* BOT-33 Library Usage Dokumentieren

* BOT-34 Library in Discord Bot integrieren

* BOT-35 Library in Telegram Bot integrieren

* BOT-36 Library in Website integrieren

* BOT-31 Common Funktionalitat / Use Cases identifizieren
* BOT-32 Typescript Library fur Bot erstellen

Seite 6/ 19



Geplanter Stand

BOT-74: Webseite

Um eine komplette Ubersicht fiir alle genutzten BeuthBot-Resourcen zu haben, soll eine Webseite
zur Prasentation dieser Ressourcen erstellt werden. Zu den Ressourcen zahlen das Ziemer's Wiki,
Telegram, Discord, Github und die Implementation des Chatbots.

Initiale Schatzung

Technologien

Frameworks/ Libraries

Abhangigkeiten

Anforderungen

Tasks

3 Tage

* TypeScript
* JavaScript

* Angular
* Bootstrap

*BOT-10
*BOT-30

* Jeder Ressource wird ein Abschnitt gewidmet, welcher
Infos & einen Link zu der jeweiligen Ressource enthalt

* Anschauliches, Einheitliches und responsive Design
der Webseite

* leicht austauschbare Komponenten

* Das System sollte eine Ansicht innerhalb von 3
Sekunden laden

* Das System sollte gut dokumentiert sein

* Das System sollte leicht zu verstehen sein

* BOT-76 Webseite Einrichten

* BOT-77 Infos zum Wiki

* BOT-78 Infos zu Telegram

* BOT-79 Infos zu Discord

* BOT-80 Infos zu GitHub

* BOT-81 Implementation Chatbot

* BOT-130 Notifications wenn Nachricht vom Chatbot
* BOT-131 Responsive

Seite 7/ 19

https://ds-maximum.de



Geplanter Stand

BOT-49: User-Messenger-Service: Nachricht proaktiv, requestunabhangig an Clients senden

Der BHT-Bot kann bisher nur passiv auf Anfragen warten und diese dann beantworten. Zur
Implementierung von asymmetrischer bzw. request-unabhangiger Kommunikation bendtigt der Bot
einen neuen Service, der als Schnittstelle fur diese Art von Kommunikation dient.

Initiale Schatzung 2.5 Tage

Technologien

Abhangigkeiten

Anforderungen

Tasks

* Javascript
* Websockets
* Docker

*BOT-30

* Der User-Messenger-Service kann eine Nachricht an einen User (via Client-
Unabhangiger User-ID) senden

* Wenn ein User mehrere Clients benutzt, wird die Nachricht an alle Clients
gesendet

* Wenn ein User (Uber langere Zeit) nicht erreichbar ist wird die Kennung entfernt
* Wenn eine Nachricht nicht an einen User gesendet werden kann bekommt der
auslosende Service diese Information unterscheidbar zwischen a) Der Nutzer ist
gerade nicht erreichbar b) Der Nutzer ist dauerhaft nicht erreichbar (geldscht) c)
Der Dienst ist generell unhealthy

* Der Service wird als Docker Image via docker-compose in die BHT-Bot
Infrastruktur integirert. Er ist Teil des BHT-Bot Repositories

* Die Funktionalitat des Services wird auf Clientseite in die Common-Chatbot-
Library (BOT-30)

* Alle bestehenden ChatBot-Services werden an den Messenger Service
angebunden (Telegram, Discord)

* BOT-50 Websocket Registry fur ChatBotClients

* BOT-51 REST-Service fur Nachrichtenversand

* BOT-52 Implementation der Websocket-Registrierung in Common-Library fur
Chatbots

* BOT-53 Implementierung der Common-Library-Websocket-Registrierung in
TelegramBot

* BOT-54 Implementierung der Common-Library-Websocket-Registrierung in
DiscordBot

* BOT-56 Dokumentation Usage Service

* BOT-110 Deployment / Release

Seite 8 /19



Geplanter Stand

BOT-37: Discord Integration

Discord ist eine weit verbreitete Kommunikatinsplattform, auf der Nutzer sich in ,Servern“
vernetzen und dort meist thematisch organisiert kommunizieren kénnen. Die Projektgruppe des
WS2020 ist selbst Teil der Zielgruppe des Discord-Messengers, wodurch sich diesese Plattform
besonders eignet um einen weiteren Chatservice (neben Telegram) an den BHT-Bot anzubinden.
Eine Implementation des Chatbots innerhalb der Discord-Struktur steigert somit zum Einen die
Verbreitung(smdoglichkeit) des BHT-Bot und bietet gleichzeitig eine gute Mdglichkeit Debug-Bot-
Instanzen im praferierten Messenger zu betreiben.

Initiale Schatzung 2 Tage

Technologien * Javascript
* Docker

Abhangigkeiten *BOT-30

Anforderungen * Der Discourse Bot benutzt die zu entwickelnde zentralisierte Library
zur Gateway Kommunikation um Coderedundanz mit dem Telegram
Bot zu verhindern
* Der Discourse Bot kann (direkte) Nutzer-Nachrichten mittels
Gateway verarbeiten und antwortet dem User entsprechend
* Wenn keine Verbindung mit dem Gateway besteht oder Fehler bei
Anfragen auftreten reagiert der Chatbot durch Prasentation einer
hilfreichen Fehlermeldung
* Der Discourse Bot wird aquivalent zum Telgram Bot in das BHT-Bot
Universum mittels Docker + compose integriert
* Der Discourse Bot ist nicht Teil des BHT Bot, er wird als paralleler,
unabhangiger Service betrieben
* Alle Credentials und Urls/Ports werden aus dem Environment
bezogen, es gibt keine hard-coded Referenzen zu Strukturen des
BHT-Bot Gateways

Tasks * BOT-38 Node)S Chatbot erstellen
* BOT-39 Docker Container + Compose fur Container erstellen
* BOT-40 Bot Usage dokumentieren
* BOT-41 Bot Account anlegen fur release
(https://discord.com/developers/applications)
* BOT-42 Bot Container in Beuth-Docker-Netzwerk einbinden (release)

Seite 9/19 https://ds-maximum.de


https://discord.com/developers/applications

Geplanter Stand

BOT-43: Erstellung eines Common-Frameworks fur (Content-)Services

Services im BHT-Bot kommunizieren alle Gber REST-Schnittstellen. Diese sind alle als Express-
Anwendung mit JSON-Kommunikation implementiert, was flr viel Code-Redundanz fihrt.
Gleichzeitig benutzt kein Service strukturierte Darstellungen der Schnittstellen, wie Anfragen und
Antworten zum Gateway, User Daten oder Rasa-Intents.

Ein spezieller, repititiver, Unterfall der Microservices sind solche, die Content bereitstellen. Diese
erhalten alle Nachrichten vom Gateway und senden ihre antworten auch dort wieder zurtck.
Request- und Response sind durch das Gateway definiert, die resultierende Struktur ist
entsprechend flr alle Contentservices prinzipiell Identisch.

Zur Vermeidung von Code-Redundanzen und Erleichterung des ,Kick-Off“ eines neuen Content-
Services sollen die Common Funktionen und Entitaten in ein Framework gegossen werden

Initiale Schatzung 1 Tag
Technologien * Javascript
* Typescript
* Dockerfile
Abhangigkeiten * BOT-37
Anforderungen * Das Framework implementiert eine NodeJS Express REST-

API, dquivalent zu den existierenden Content-Services

* Das Framework lasst sich in NodeJS Anwendungen via
Dependency-Management einbinden (npm/yarn)

* Das Framework abstrahiert den (Express) Server und dessen
Routing, so dass ein Contentservices nur noch die Response
implementieren muss

* Das Framework implementiert die Schnittstelle zum
Datenbankservice um a) Userdaten zu speichern/abzurufen
und b) eigene Daten zu speicher und abzurufen

* Das Framework fillt die “debug-history” der Requests so,
dass ein Service dieses Feature zwangsweise implementiert /
nutzt

* Requests, Responses, User, Rasa-Intents und ggf. weitere
Entitaten werden durch das Framework als typisierte
(typescript) Objekte definiert

* Das Framework wird in allen bestehenden und geplanten
Content-Services implementiert: Wetter, Mensa, Reminder

* Die Nutzung des Frameworks ist verstandlich dokumentiert
* Die Contribution wird mittels Linting, Dokumentation und
Build-Scripts erleichtert

* Das Framework nutzt types aus der (noch zu entwickelnde)
BHT-Bot Library um Redundanzen zwischen Client-Bibliothem
und Service-Framwork zu vermeiden

Tasks * BOT-44 Common Code, Features, Entitaten identifizieren -
Use Case ableiten
* BOT-45 Typisiertes Javascript Framework erstellen
* BOT-46 Framework einbinden in Weather Service
* BOT-47 Framework einbinden in Mensa Service
* BOT-48 Framework einbinden in Reminder Service
* BOT-108 Framework dokumentieren
* BOT-117 Request History implementieren - Nutzung enforcen

Seite 10/ 19



Geplanter Stand

BOT-13: Komponente zur Umwandlung von Sprache zu Text (STT)

Es soll ermdglicht werden, dass Benutzern neben Textnachrichten auch mittels Sprachnachrichten
mit dem BeuthBot kommunizieren kénnen. Dabei sollen die Sprachnachrichten mittels eines neuen
Services in Text Ubersetzt werden und dann wie andere Textnachrichten verarbeitet werden. Hierzui
sollen 3 bekannte STT-Frameworks (Kaldi, Mozilla Voice STT und Wav2Letter) getestet und
vergleichen werden. Basierend darauf soll eine Entscheidung getroffen werden, welches Framework
schlussendlich in der Production-Environment verwendet werden soll. Das Framework wird dann in
Form eines neuen Micro-Services in den BeuthBot integriert.

Initiale Schatzung

Programmiersprachen

Abhangigkeiten

3 Tage

* Python (Mozilla Voice STT)
* C++ (Kaldi, WAV2Letter)
* Kaldi

* Mozilla Voice STT

* WAV2Letter

* BOT-43: Erstellung eines Common-Frameworks fur
(Content-)Services

Anforderungen * Die Ubersetzung soll mittels neuronaler Netzte
geschehen
* Nur Sprachnachrichten auf Deutsch sollen Ubersetzt
werden
* Das verwendete Framework muss OpenSource sein
und Lokal auf dem BeuthBot-Server ausfuhrbar sein
* Es soll keine Model-Adapation durchgefuhrt werden
Tasks * BOT-69 WAV2Letter testen
* BOT-70 Mozilla Voice testen
* BOT-73 Kaldi testen
* BOT-71 Framework aussuchen
* BOT-122 Micro-Service erstellen
* BOT-123 Sprachnachricht in WAV umwandeln
Seite 11/ 19 https://ds-maximum.de



Geplanter Stand

BOT-23: Komponente zur Umwandlung von Text zu Sprache (TTS)

Neben der bereits vorhandenen Funktion Textnachrichten vom Beuthbot zu erhalten, sollen Nutzer
die Maglichkeit bekommen ebenfalls Sprachnachrichten zu empfangen. Hierflr wird eine
Komponente zur Konvertierung von Text in Sprache (Eng: , Text-To-Speech (TTS)) bendtigt. Dieses
Feature soll dem Nutzer in kiinftigen, dem Beuthbot hinzugefligten, Messenger-Diensten zur
Verfligung stehen. Zur Umsetzung soll optimalerweise von einer Library Gebrauch gemacht werden,
welche den Anforderungen gerecht wird.

Initiale Schatzung 1 Tag

Technologien Javascript

Abhangigkeiten * BOT-43: Erstellung eines Common-Frameworks fur (Content-
)Services

Anforderungen * Support fur die deutsche Sprache

* Sprachnachrichten lassen sich als MP3- und WAV-Dateien
exportieren

* Das Feature ist bzgl. Opt-in oder Opt-out in den Hilfe-
Texten/BegruBungsnachrichten des Beuthbots dokumentiert

Nice to Haves Sprachgeschwindigkeit und Stimme des Sprechers sind
konfigurierbar
Tasks * BOT-24 Recherche nach geeignetem Tool (TTS)

* BOT-25 Eigene Implementierung (TTS)
* BOT-98 Integration in Beuthbot

Seite 12 /19



Geplanter Stand

BOT-55: Erinnerungs-Service: Behandelt ,erinnere mich“ Befehle und erinnert bei Falligkeit autonom

Erinnerungen schedulen zu kénnen ist ein typischer, weil praktischer, Anwendungsfall in beliebten
(Business) Kommunikations-Services wie Slack oder Mattermost. In beiden Fallen wird diese
Funktionalitat durch die hauseigenen Reminder-Bots zur Verfligung gestellt.

Um die Featuredichte des BHT-Bot zu erh6hen wird ein Reminder-Service erstellt, durch den
identische Funktionalitat wie bei genannten Diensten zur Verfiigung stellt. Durch die Multi-
Messenger-Fahigkeit des BHT-Bot wird dieses Feature somit auch fur User angeboten, deren
Kommunikations-Plattform keinen eigenen Reminder-Bot anbietet.

BeispielAnfragen:

* Erinnere mich am 22.10. an die Klausur in Mathe

* Erinnere mich jeden Donnerstag um 18 Uhr an den Ballettkurs

* Erinnere mich jedes Jahr am 01.01 an den Geburtstag meiner Mutter.

* Erinnere mich in 10 Tagen das Probeabonnement zu kiindigen

* <Erinnere> <Zeitpunkt/Zeitspanne/Interval> <Thema>

Initiale Schatzung 3 Tage

Technologien * Javascript
* Docker
* Rasa
* MongoDB
* Cronjob

Abhangigkeiten *BOT-43
* BOT-30
* BOT-12
* BOT-49

Anforderungen * Erfolgreiche ,erinnere”-Anfragen werden vom Dienst durch
Bestatigung der erkannten und persistierten Daten
beantwortetoder
* Fehlerhafte “erinnere”-Anfragen werden durch ein Mini-
Usage-Tutorial beantwortet, damit der User seine Anfrage
korrigieren kann
* Erinnerungen werden auf user-ebene (clientunabhangig)
gespeichert, so dass ein User die gleichen Erinnerungen in
allen genutzten Clients zur Verfigung hat
* Erinnerungen werden bei Falligkeit einmalig (an alle clients
des users) ausgespielt
* Wiederkehrende Erinnerungen werden ausgespielt und
anschlieBend an Hand des Intervals neu terminiert
* Der Nutzer kann Erinnerungen l6schen
* Der Nutzer kann seine Erinnerungen anzeigen lassen
* Der Service wird als Docker Container via docker-compose
verwaltet und in das BHT-Repository integriert
* Der Service nutzt das (noch zu schaffende) Content-Service-
Framework
* Wenn der Reminder-Service nach einem Ausfall wieder aktiv
wird erinnert er nicht (einzeln) an alle Termine, die
zwischenzeitig fallig waren
* Der Serive ist in Hilfe-Texten des (Chat) BHT-Bots integriert

Seite 13/ 19 https://ds-maximum.de



Geplanter Stand

Tasks * BOT-57 Rasa Anbindung ,Erinnere“-Direktive
* BOT-58 Service Endpoint speichert Reminder und Antwortet
auf Probleme
* BOT-59 Scheduler/Cronjob prift und sendet regelmalig
fallige Erinnerungen
* BOT-60 Dokumentation Service Usage
* BOT-109 Deployment / Release
* BOT-112 Hilfe-Texte in (Chat)BHT-Bot help-command /
willkommensnachricht

Seite 14 /19



Geplanter Stand

BOT-82: Termin-Scraper, der automatisch Erinnerungen aus offentlichen Quellen bezieht

Es gibt Termine, an die wollen alle Studierenden typischerweise erinnert werden, als auch Termine,
von denen die Universitat mochte, dass die Studierende sich daran erinnern. Typische Beispiele
hierfir sind Rickmeldefristen und (Beuth-eigene) Feiertage.

Durch einen Webscraper sollen solche Termine aus (6ffentlichen) Quellen automatisch bezogen und
dann an alle Studierenden ausgespielt werden.

Auch wenn dieses Feature fur die meisten Studierenden interesssant sein dirfte, muss es eine
Mdglichkeit zum Opt-Out geben. Ggf. ist sogar angezeigt, dass ein Opt-In erfolgt, was allerdings den
Nutzen des Features, vor allem aus Universitatssicht, mindern wirde.

Initiale Schatzung

Technologien

Abhangigkeiten

Anforderungen

Tasks

1 Tag

* Javascript
* Docker
* HTML-DOM

*BOT-55

* Relevante Termine werden regelmaRig, automatisch bezogen
und als Erinnerung gespeichert

* User kdnnen “globale Erinnerungen” aktivieren oder deaktivieren
* Das Feature ist resistent gegen Anderungen an den Domains
oder deren Struktur — Fallen gescrapete Dienste langer aus wird
dies reported

* Das Feature wird als nicht-eigenstandig in den Reminder Service
integriert

* Das Feature ist bzgl. Opt-in oder Opt-out in den Hilfe-
Texten/BegruBungsnachrichten des BHT-Bot dokumentiert

* BOT-83 Prufen ob Opt-In (natig ist) oder Opt-Out (madglich ist)
* BOT-84 Quellen mit relevanten Terminen zusammentragen - auf
Scrapebarkeit achten

* BOT-85 Scraping (mittels Scapring-Service) implementieren
* BOT-86 Termine aus Scraping in Erinnerungs Datenbank
uberflihren

* BOT-87 Rasa Direktive Opt-In oder Opt-Out implementieren

* BOT-88 Error-Reporting implementieren, bei Misslungenen
Scraping (Uber gewisse Zeit hinweg)

* BOT-114 Opt-In oder Opt-Out in Hilfe-Texten /
Willkommensnachricht dokumentieren

Seite 15/ 19

https://ds-maximum.de



Geplanter Stand

BOT-89: Moodle iCal import als Erinnerungen

Moodle ist die zentrale Online-Lernplattform der Beuth Hochschule. Kurse, die in Moodle verwaltet
werden erhalten in der Regel Abgabetermine fir Aufgaben, die wahrend des Semesters fallig
werden. Oftmals stehen diese Abgabetermine bereits zu Beginn des Semesters in Moodle fest und
kénnen dort in einer Kalenderansicht betrachtet werden.

Moodle bietet auBerdem eine Funktion zum Export der Eintragungen im eigenen Kalender:
https://Ims.beuth-hochschule.de/calendar/export.php

Der User kann hier einen Link erzeugen, Uber den eine iCal Datei bezogen werden kann. Diese Datei
enthalt die Semestertermine und kann entsprechend in Erinnerungen des Bots umgewandelt
werden

Initiale Schatzung 1 Tag
Technologien * Javascript
*iCal
* Rasa
Abhangigkeiten * BOT-55
Anforderungen * Der User kann dem Bot seinen Moodle-Kalender-Export-Link

senden um einen Import auszulésen

* Die iCal Datei hinter dem Export-Link wird in Erinnerungs-
Eintrage des Erinnerungs-Service umgewandelt

* Erinnerungen an Abgabetermine erfolgen zu Beginn des
Tages / zeitlich versetzt vor der Falligkeit der Abgabe, nicht
zum im Kalender angegebenen Zeitpunkt

* Das Moodle-Import Feature wird nicht-eigenstandig in den
Reminder-Service integriert

* Das Feature (und seine Nutzung) ist in der BHT-Bot Hilfe
gelistet

Tasks * BOT-90 Import Moodle Rasa Direktive
* BOT-91 Moodle iCal Download via zentralem Scaper Service
* BOT-92 iCal Parsing und Persistierung als (sinnvolle)
Erinnerung
* BOT-111 Feature Release
* BOT-113 Hilfe-Texte in (Chat)BHT-Bot help-command /
willkommensnachricht

Seite 16 / 19


https://lms.beuth-hochschule.de/calendar/export.php

Geplanter Stand

BOT-75: BegrufRungsnachricht

Neue Benutzer des BeuthBots sollen mit einer BegriBungsnachricht empfangen werden. Diese
Nachricht soll die Features des BeuthBots vorstellen und einen Shortcut nennen, welchen die
Benutzer verwenden kénnen, wenn sie Hilfe benétigen. Mit dem Shortcut listet der BeuthBot

nochmals all seine Features auf.

Initiale Schatzung
Technologien
Abhangigkeiten

Anforderungen

Tasks

1 Tag
* JavaScript
Keine

* Die BegruBungsnachricht erscheint nur fir neue Benutzer

* Das System sollte einen Shortcut zur Wiedervorstellung der
Features bereitstellen, falls Benutzer Hilfe brauchen

* Das System muss in der Lage sein, auf die Hilfeanfrage.
des Benutzers mit Hilfe des Shortcuts innerhalb von 1,5
Sekunden zu antworten

* Das System sollte gut dokumentiert sein

* Das System sollte leicht zu verstehen sein

* BOT-93 Client

*BOT-94 Server

* BOT-132 Server fragt alle anderen Server was sie kdnnen/
machen und gibt das dann aus

Seite 17 /19

https://ds-maximum.de



Geplanter Stand

BOT-11: Universeller Scraper & Download

Der Beuthbot soll einen ,universellen“ Web-Scraper beinhalten, der als Grundlage flr kiinftige
Features dienen soll, die flr konkrete Scraping-Funktionalitaten vorgesehen sind. Aufgrund der
hohen Diversitat an Datenstrukturen unterschiedlicher Webseiten, soll dieser maglichst abstrakte
Funktionalitaten zur Extrahierung von Datensatzen bieten.

Initiale Schatzung 1 Tag
Technologien Javascript
Abhangigkeiten * BOT-43: Erstellung eines Common-Frameworks fur

(Content-)Services

Anforderungen *Import von HTML- und XML-Dateien
*Daten lassen sich im JSON-Format exportieren
*Datensatze sind per HTML-Tags und CSS-Selektoren
extrahierbar
*Dateien einer Webseite lassen sich downloaden

Tasks * BOT-26 Recherche nach geeignetster Methode (HTML-
JSON)

Seite 18 /19



Geplanter Stand

BOT-15: Personalliste der Beuth-Hochschule im BeuthBot abrufbar machen

Dem Bot wird eines neues Feature hinzugefugt. Dieses Feature soll dem Benutzer des BeuthBots ein
Abfrage von Informationen Uber das Personal der Beuth Hochschule(BHT) ermdglichen

Ablauf:

Der Benutzer teilt dem Bot Uber einen Befehl mit (“Wer ist Max Mustermann?”, “Welche Person hat
die E-Mail mail@mail.com?”, “Welche Personen sitzen in Raum B001?”) , dass er Informationen Uber
eine oder mehrere Personen erhalten méchte. Der Bot prift dann die mitgegebenen Informationen
und gibt dann aus:

* Wenn er passende Daten in der Datenbank findet:

- Auflistung der angefragen Daten

* Wenn er keine passenden Daten finden kann:

- Meldung, das die Suche erfolglos war

Weitere Informationen:

Die Informationen Uber das Personal werden in einer Tabelle in der Datenbank gespeichert und von
dort abgerufen. Diese Informationen kénnen jederzeit aktuallisiert werden.

Spatere Erweiterungsmoglichkeiten:

Zunachst werden nur Entwickler Zugriff auf das Bearbeiten der Daten besitzen, fir eine spatere
Ausbaustufe ist aber eine Verwaltung der Daten mittels dafir berechtigter User vorstellbar.

Die Einbindung der Personaldaten kann Uber einen Scrapper auf der Seite der Personalliste auch
persepektivisch komplett automatisiert werden.

Die Daten in der Datenbank kdnnen mit neuen Informationen erweitert werden. (Personliches,
Sprechzeiten, etc.)

Initiale Schatzung 3 Tage
Technologien * Javascript
* mongodb
Abhangigkeiten keine
Anforderungen * Auslesen der Personalliste der BHT

* Einbau einer Speichermdglichkeit in der Datenbank
* Speichern der ausgelesenen Informationen in der
Datenbank

* Schnittstelle zur Bearbeitung der Daten erstellen

* Anlegen eines neuen Service ,Personalliste” im Bot
* Service zur Verwendung flr die Benutzer abrufbar
machen

Tasks * BOT-17 - initiales Auslesen der Personalliste
* BOT-18 - Abrufen der Information aus der Personalliste
* BOT-19 - Erkennung der Benutzeranfrage zur
Personensuche
* BOT-96 - Bearbeiten der Daten der Personalliste
* BOT-125 - Erstellen einer neuen Tabelle ,,Personalliste”
in der Datenbank

Nutzungshinweis: Auf dieses vorliegende Schulungs- oder Beratungsdokument (ggf.) erlangt der
Mandant vertragsgemal ein nicht ausschlielRliches, dauerhaftes, unbeschranktes, unwiderrufliches
und nicht Ubertragbares Nutzungsrecht. Eine hieruber hinausgehende, nicht zuvor durch
datenschutz-maximum bewilligte Nutzung ist verboten und wird urheberrechtlich verfolgt.

Seite 19/ 19 https://ds-maximum.de



	Geplanter Stand
	Präambel
	Content First
	Redundanter Code / Wartbarkeit der Microservices
	Qualitätsmanagement
	Hands-On & Dokumentation

	Übersicht geplante Tasks und Abhängigkeiten
	Architektur
	Aufgaben Spezifikation


