
 datenschutz-maximum Version 22.11.2020 20:11, Seite 1 / 19

https://wiki.ziemers.de/wiki/software/beuthbot/berichte/ws2020/zwischen/geplanter-stand-preambel?rev=1606072308 Gedruckt
01.02.2026 10:55

Geplanter Stand

Präambel

Neben einigen wünschen der Projektleitung konnte die Projektgruppe eigene Schwerpunkte in die
Feature Planung einbringen. Die nachfolgende Feature-Planung ist ein resultat der folgenden
Überlegungen

Content First

Der BHT-Bot besteht bisher aus lediglich zwei Services, die Content zur Verfügung stellen: Mensa- und
Wetter-Service. Aufgrund der Covid19-Pandemie findet keine Präsenzveranstaltungen an der
Hochschule statt und in Folge dessen hat die Mensa geschlossen, der Bot-Service ist entsprechend
auch eingestellt. Defakto kann der BHT-Bot damit derzeit ausschließlich das Wetter ansagen. Für uns
ist es daher umso wichtiger dieses Semester neuen Content zu erzeugen bzw. nutzbare Features in
den BHT-Bot zu integrieren, damit dieses Projekt überhaupt eine Daseinsberechtigung bekommt.

Redundanter Code / Wartbarkeit der Microservices

Beim Studium der einzelnen Services wurde sichtbar, dass fast ausnahmslos jeder Service des BHT-
Bot die gleiche Grundstruktur hat: Alle Services stellen eine JSON-REST-Schnittstelle zur Verfügung,
die via NodeJS + Express Framework implementiert ist. Vergleicht man die Services, sieht man, dass
insbesondere Services, die Inhalte ausspielen sollen einer identischen Struktur folgen (müssen), dies
aber individuell handhaben. Dadurch ist der Boilerplate Code für jeden Service unnötig hoch und
zugleich ist das Warten der Services bei Änderung von globalen Schnittstellen mit hohem
individuellen Aufwand verbunden. Wir wollen diese Common-Funktionalitäten identifizieren und in
zentralen Bibliotheken bzw. Frameworks bündeln.

Qualitätsmanagement

Bisher sind alle Services lose miteinander verbunden, jeder Service implementiert die Kommunikation
für sich selbst, die Integration erfolgt durch manuelles Deployment, es gibt keine Typisierung, keine
(automatischen) Regeln zur Collaboration, keine Versionierung, kein Unit-Testing, kein Monitoring, ..
Kurz gesagt: Der BHT-Bot hat bislang keine Form von Qualitätssicherung. Dadurch ergeben sich
natürlich viele Baustellen, die wir, insbesondere auch angesichts unserers Anspruchs „Inhalte in den
Bot zu bringen“ kaum befriedigend erfüllen können. Wir wollen dennoch einen Beitrag zur
Verbesserung der aktuellen Situation erbringen:

Wir schreiben typisierte Libraries, die eine zentrale Dokumentation der Kommunikation mit dem1.
Bot darstellt.
Alle Libraries und Frameworks werden durch Linting-Regeln in ein, für alle Entwickler2.
einheitliches, Format gebracht

Geplanter Stand

Seite 2 / 19

Alle Libraries und Frameworks haben automatische Unit-Tests, als auch Prüfung der3.
Testabdeckung, wir verlangen mindestens 80% Testabdeckung, Ziel ist 100% zu erreichen
Wir wechseln vom bisherigen manuellen Deployment zu einer automatischen CI/CD Pipeline.4.
Diese Pipeline beinhaltet auch eine Testing-Stage, in die wir dieses Semester mindestens einen
Service anbinden werden
Releases werden durch Versionierte Git Tags erzeugt (und dann automatisch deployed) - Die5.
Tags werden semantisch versioniert
Neue Features werden via Pull Request in das Repository übernommen. Nach Möglichkeit6.
werden die Requests durch ein Projektmitglied reviewd und freigegeben

Dokumentation

Übersicht geplante Tasks und Abhängigkeiten
ID Name Priorität Initiale

Aufwandsschätzung
(in Tage)

Abhängigkeiten Wird
verticketet
von

BOT-16 Support mehrerer
Messenger-Typen durch
Umbau der
Benutzererkennung

1 1 Lukas Danke

BOT-12 Rasa Update auf 2.0 1 1 Robert
Halwaß

BOT-30 Chatbot Library:
Vereinheitlichung der
Kommunikation von
Javascript Chatbots mit
dem Gateway

2 1 BOT-16 Dennis Walz

BOT-74 Webseite 2 3 BOT-16, BOT-30 Rim Khreis

BOT-49 User-Messenger-Service:
Nachricht proaktiv,
requestunabhängig an
Clients senden

2 2.5 Dennis Walz

BOT-37 Discord Integration 2 2 BOT-16, BOT-30 Dennis Walz

BOT-43 Erstellung eines Common-
Frameworks für (Content-
)Services

2 1.5 Dennis Walz

BOT-13 Komponente zur
Umwandlung von Sprache
zu Text (STT)

3 3 BOT-43 Robert
Halwaß

Geplanter Stand

Seite 3 / 19 https://ds-maximum.de

ID Name Priorität Initiale
Aufwandsschätzung
(in Tage)

Abhängigkeiten Wird
verticketet
von

BOT-23 Komponente zur
Umwandlung von Text zu
Sprache (TTS)

3 3 BOT-43 Alexis
Popovski

BOT-55 Erinnerungs-Service:
Behandelt „erinnere mich“
Befehle und erinnert bei
Fälligkeit autonom

3 3 BOT-12 Dennis Walz

BOT-82 Termin-Scraper, der
automatisch Erinnerungen
aus öffentlichen Quellen
bezieht

3 1 BOT-12, BOT-55 Dennis Walz

BOT-89 Moodle iCal import als
Erinnerungen

3 1 BOT-12, BOT-55 Dennis Walz

BOT-75 Begrüßungsnachricht 4 1 Rim Khreis

BOT-11 Universelles Scraper &
Download

4 3 BOT-43 Alexis
Popovski

BOT-15 Personalliste der Beuht-
Hochschule im Beuthbot
abrufbar machen

4 2 BOT-12, BOT-43 Lukas Danke

Architektur

BeuthBot

NLU

Services Database

STT TTS

Reminder

Staff

UserMessengingService

gateway

registry cache

deconcentrator-js rasa

weathermensa databasepersonalliste database-controller mongo-db

wav2letter modelstt-controller say.jstts-controller

reminder-controller

staff-controller

UMS-Controller Websocket

User

telegram-botdiscord-botwebsite-bot

Aufgaben Spezifikation
BOT-16: Support mehrerer Messenger-Typen durch Umbau der Benutzererkennung

Geplanter Stand

Seite 4 / 19

Aktueller Stand:

Der BeuthBot unterstützt aktuell nur eine Verwendung über Telegram. Die Telegram-ID des
Benutzers wird in der Datenbank gespeichert.
Diese wird dann verwendet, um individuelle Informationen zu dem Benutzer abrufen zu können.

Geplanter Umbau:
In Zukunft sollen für den BeuthBot mehrere Kontaktmöglichkeit zur Verfügung gestellt werden.
Damit ein Benutzer aber auch unabhängig vom Messenger erkannt wird muss der BeuthBot
angepasst werden:
1. Umbau der Datenbank damit mehrere Messenger-IDs gespeichert werden können
2. Umbau der Erkennung des Messengers
3. Vereinfachen der Erkennung, damit ein zukünfiger Support von neuen Messengern einfach und
schnell erfolgen kann.

Initiale Schätzung 3 Tage

Technologien * Javascript
* mongodb

Abhängigkeiten keine

Anforderungen * einzelne Speicherung der Telegram-ID aus der Datenbank
entfernen
* Neue Spalte zur Verwaltung aller Benutzer-IDs
* vereinfachter Einbau von neuen Messengern
gewährleisten
* Abhängigkeit von der Telegram-ID entfernen
* Mehrere Messenger verfügbar machen
* Anmeldung eines neuen Benutzers
* Löschen eines Benutzers/Messengers
* Anmeldung eines neuen Messengers für ein bestehenden
Benutzer

Tasks * BOT-20 - Umbau der Datenbank - Speicherung von
mehreren Accounts für einen Benutzer
* BOT-21 - Anmeldung eines neuen Accounts für einen
Benutzer
* BOT-22 - Löschen eines bestehenden Accounts für einen
Benutzer
* BOT-97 - Methodik zur einfachen Erweiterung der
unterstützten Messenger

Geplanter Stand

Seite 5 / 19 https://ds-maximum.de

BOT-12: Rasa 2.0 Update

Um die neusten Funktionen und Fixes von Rasa zu benutzen, ist ein Update von Version 1.6 auf 2.0
notwendig.

Initiale Schätzung 3 Tage

Technologien * Python
* Rasa

Abhängigkeiten keine

Anforderungen * Kompatibilität mit bestehenden NLU-Trainingsdaten erhalten
* Mögliche JSON- und MarkDown-Dateien in YAML-Datein umwandeln

Tasks * BOT-62: Config Anpassen
* BOT-63: Duckling updaten
* BOT-64: Modell neu trainieren
* BOT-116: Performance zwischen Version 1.6 und 2.0 vergleichen

Geplanter Stand

Seite 6 / 19

BOT-30: Chatbot Library: Vereinheitlichung der Kommunikation von Javascript Chatbots mit dem
Gateway

Problem: Derzeit muss jede Anwendung, die den BHT-Bot als Chatbot implementieren möchte
selbst implementieren, wie die Kommunikation zwischen Anwendung und Gateway aussieht, als
auch die Schnittstellen Parameter in Anfrage und Antwort.
Um diese Implementationsredundanz zu verhindern, wird die Kommunikation und Typedefinitionen
in einer zentralen Javascript Bibliothek zusammengefasst.
Dies ermöglicht auch weitere geplante Funktionalitäten (wie der asymmetrische
Kommnuikationskanal zur Requestunabhängigen Server → Client Kommunikation) zentral
entwickelt und mittels Dependency Management schnell in die ChatClients überführt werden.

Initiale Schätzung 1 Tag

Technologien * Javascript
* Typescript

Abhängigkeiten keine

Anforderungen * Die Library lässt sich in Node und Browser Javascript
einbinden
* Die Library nutzt semantische Versionierung zur
Ermöglichung von Non-Breaking-Updates
* Die fertige Library lässt sich via Dependency-Management
(npm/yarn/webpack) userseitig einbinden und updaten
* Die Library enthält typisierte (typescript) Entitäten für
Common Request und Response Format(e)
* Die Library enthält Unit-Tests für essentielle Funktionen
und Typen
* Die Library ist dokumentiert, sowohl was Nutzung, als auch
Contribution angeht
* Die Library verbessert die Collaboration mittels Linting-
Regeln und Workflow-Scripten

Tasks * BOT-33 Library Usage Dokumentieren
* BOT-34 Library in Discord Bot integrieren
* BOT-35 Library in Telegram Bot integrieren
* BOT-36 Library in Website integrieren
* BOT-31 Common Funktionalität / Use Cases identifizieren
* BOT-32 Typescript Library für Bot erstellen

Geplanter Stand

Seite 7 / 19 https://ds-maximum.de

BOT-74: Webseite

Um eine komplette Übersicht für alle genutzten BeuthBot-Resourcen zu haben, soll eine Webseite
zur Präsentation dieser Ressourcen erstellt werden. Zu den Ressourcen zählen das Ziemer's Wiki,
Telegram, Discord, Github und die Implementation des Chatbots.

Initiale Schätzung 3 Tage

Technologien * TypeScript
* JavaScript

Frameworks/ Libraries * Angular
* Bootstrap

Abhängigkeiten * BOT-10
* BOT-30

Anforderungen * Jeder Ressource wird ein Abschnitt gewidmet, welcher
Infos & einen Link zu der jeweiligen Ressource enthält
* Anschauliches, Einheitliches und responsive Design
der Webseite
* leicht austauschbare Komponenten
* Das System sollte eine Ansicht innerhalb von 3
Sekunden laden
* Das System sollte gut dokumentiert sein
* Das System sollte leicht zu verstehen sein

Tasks * BOT-76 Webseite Einrichten
* BOT-77 Infos zum Wiki
* BOT-78 Infos zu Telegram
* BOT-79 Infos zu Discord
* BOT-80 Infos zu GitHub
* BOT-81 Implementation Chatbot
* BOT-130 Notifications wenn Nachricht vom Chatbot
* BOT-131 Responsive

Geplanter Stand

Seite 8 / 19

BOT-49: User-Messenger-Service: Nachricht proaktiv, requestunabhängig an Clients senden

Der BHT-Bot kann bisher nur passiv auf Anfragen warten und diese dann beantworten. Zur
Implementierung von asymmetrischer bzw. request-unabhängiger Kommunikation benötigt der Bot
einen neuen Service, der als Schnittstelle für diese Art von Kommunikation dient.

Initiale Schätzung 2.5 Tage

Technologien * Javascript
* Websockets
* Docker

Abhängigkeiten * BOT-30

Anforderungen * Der User-Messenger-Service kann eine Nachricht an einen User (via Client-
Unabhängiger User-ID) senden
* Wenn ein User mehrere Clients benutzt, wird die Nachricht an alle Clients
gesendet
* Wenn ein User (über längere Zeit) nicht erreichbar ist wird die Kennung entfernt
* Wenn eine Nachricht nicht an einen User gesendet werden kann bekommt der
auslösende Service diese Information unterscheidbar zwischen a) Der Nutzer ist
gerade nicht erreichbar b) Der Nutzer ist dauerhaft nicht erreichbar (gelöscht) c)
Der Dienst ist generell unhealthy
* Der Service wird als Docker Image via docker-compose in die BHT-Bot
Infrastruktur integirert. Er ist Teil des BHT-Bot Repositories
* Die Funktionalität des Services wird auf Clientseite in die Common-Chatbot-
Library (BOT-30)
* Alle bestehenden ChatBot-Services werden an den Messenger Service
angebunden (Telegram, Discord)

Tasks * BOT-50 Websocket Registry für ChatBotClients
* BOT-51 REST-Service für Nachrichtenversand
* BOT-52 Implementation der Websocket-Registrierung in Common-Library für
Chatbots
* BOT-53 Implementierung der Common-Library-Websocket-Registrierung in
TelegramBot
* BOT-54 Implementierung der Common-Library-Websocket-Registrierung in
DiscordBot
* BOT-56 Dokumentation Usage Service
* BOT-110 Deployment / Release

Geplanter Stand

Seite 9 / 19 https://ds-maximum.de

BOT-37: Discord Integration

Discord ist eine weit verbreitete Kommunikatinsplattform, auf der Nutzer sich in „Servern“
vernetzen und dort meist thematisch organisiert kommunizieren können. Die Projektgruppe des
WS2020 ist selbst Teil der Zielgruppe des Discord-Messengers, wodurch sich diesese Plattform
besonders eignet um einen weiteren Chatservice (neben Telegram) an den BHT-Bot anzubinden.
Eine Implementation des Chatbots innerhalb der Discord-Struktur steigert somit zum Einen die
Verbreitung(smöglichkeit) des BHT-Bot und bietet gleichzeitig eine gute Möglichkeit Debug-Bot-
Instanzen im präferierten Messenger zu betreiben.

Initiale Schätzung 2 Tage

Technologien * Javascript
* Docker

Abhängigkeiten * BOT-30

Anforderungen * Der Discourse Bot benutzt die zu entwickelnde zentralisierte Library
zur Gateway Kommunikation um Coderedundanz mit dem Telegram
Bot zu verhindern
* Der Discourse Bot kann (direkte) Nutzer-Nachrichten mittels
Gateway verarbeiten und antwortet dem User entsprechend
* Wenn keine Verbindung mit dem Gateway besteht oder Fehler bei
Anfragen auftreten reagiert der Chatbot durch Präsentation einer
hilfreichen Fehlermeldung
* Der Discourse Bot wird äquivalent zum Telgram Bot in das BHT-Bot
Universum mittels Docker + compose integriert
* Der Discourse Bot ist nicht Teil des BHT Bot, er wird als paralleler,
unabhängiger Service betrieben
* Alle Credentials und Urls/Ports werden aus dem Environment
bezogen, es gibt keine hard-coded Referenzen zu Strukturen des
BHT-Bot Gateways

Tasks * BOT-38 NodeJS Chatbot erstellen
* BOT-39 Docker Container + Compose für Container erstellen
* BOT-40 Bot Usage dokumentieren
* BOT-41 Bot Account anlegen für release
(https://discord.com/developers/applications)
* BOT-42 Bot Container in Beuth-Docker-Netzwerk einbinden (release)

https://discord.com/developers/applications

Geplanter Stand

Seite 10 / 19

BOT-43: Erstellung eines Common-Frameworks für (Content-)Services

Services im BHT-Bot kommunizieren alle über REST-Schnittstellen. Diese sind alle als Express-
Anwendung mit JSON-Kommunikation implementiert, was für viel Code-Redundanz führt.
Gleichzeitig benutzt kein Service strukturierte Darstellungen der Schnittstellen, wie Anfragen und
Antworten zum Gateway, User Daten oder Rasa-Intents.
Ein spezieller, repititiver, Unterfall der Microservices sind solche, die Content bereitstellen. Diese
erhalten alle Nachrichten vom Gateway und senden ihre antworten auch dort wieder zurück.
Request- und Response sind durch das Gateway definiert, die resultierende Struktur ist
entsprechend für alle Contentservices prinzipiell Identisch.
Zur Vermeidung von Code-Redundanzen und Erleichterung des „Kick-Off“ eines neuen Content-
Services sollen die Common Funktionen und Entitäten in ein Framework gegossen werden

Initiale Schätzung 1 Tag

Technologien * Javascript
* Typescript
* Dockerfile

Abhängigkeiten * BOT-37

Anforderungen * Das Framework implementiert eine NodeJS Express REST-
API, äquivalent zu den existierenden Content-Services
* Das Framework lässt sich in NodeJS Anwendungen via
Dependency-Management einbinden (npm/yarn)
* Das Framework abstrahiert den (Express) Server und dessen
Routing, so dass ein Contentservices nur noch die Response
implementieren muss
* Das Framework implementiert die Schnittstelle zum
Datenbankservice um a) Userdaten zu speichern/abzurufen
und b) eigene Daten zu speicher und abzurufen
* Das Framework füllt die “debug-history” der Requests so,
dass ein Service dieses Feature zwangsweise implementiert /
nutzt
* Requests, Responses, User, Rasa-Intents und ggf. weitere
Entitäten werden durch das Framework als typisierte
(typescript) Objekte definiert
* Das Framework wird in allen bestehenden und geplanten
Content-Services implementiert: Wetter, Mensa, Reminder
* Die Nutzung des Frameworks ist verständlich dokumentiert
* Die Contribution wird mittels Linting, Dokumentation und
Build-Scripts erleichtert
* Das Framework nutzt types aus der (noch zu entwickelnde)
BHT-Bot Library um Redundanzen zwischen Client-Bibliothem
und Service-Framwork zu vermeiden

Tasks * BOT-44 Common Code, Features, Entitäten identifizieren →
Use Case ableiten
* BOT-45 Typisiertes Javascript Framework erstellen
* BOT-46 Framework einbinden in Weather Service
* BOT-47 Framework einbinden in Mensa Service
* BOT-48 Framework einbinden in Reminder Service
* BOT-108 Framework dokumentieren
* BOT-117 Request History implementieren - Nutzung enforcen

Geplanter Stand

Seite 11 / 19 https://ds-maximum.de

BOT-13: Komponente zur Umwandlung von Sprache zu Text (STT)

Es soll ermöglicht werden, dass Benutzern neben Textnachrichten auch mittels Sprachnachrichten
mit dem BeuthBot kommunizieren können. Dabei sollen die Sprachnachrichten mittels eines neuen
Services in Text übersetzt werden und dann wie andere Textnachrichten verarbeitet werden. Hierzui
sollen 3 bekannte STT-Frameworks (Kaldi, Mozilla Voice STT und Wav2Letter) getestet und
vergleichen werden. Basierend darauf soll eine Entscheidung getroffen werden, welches Framework
schlussendlich in der Production-Environment verwendet werden soll. Das Framework wird dann in
Form eines neuen Micro-Services in den BeuthBot integriert.

Initiale Schätzung 3 Tage

Programmiersprachen * Python (Mozilla Voice STT)
* C++ (Kaldi, WAV2Letter)
* Kaldi
* Mozilla Voice STT
* WAV2Letter

Abhängigkeiten * BOT-43: Erstellung eines Common-Frameworks für
(Content-)Services

Anforderungen * Die Übersetzung soll mittels neuronaler Netzte
geschehen
* Nur Sprachnachrichten auf Deutsch sollen übersetzt
werden
* Das verwendete Framework muss OpenSource sein
und Lokal auf dem BeuthBot-Server ausführbar sein
* Es soll keine Model-Adapation durchgeführt werden

Tasks * BOT-69 WAV2Letter testen
* BOT-70 Mozilla Voice testen
* BOT-73 Kaldi testen
* BOT-71 Framework aussuchen
* BOT-122 Micro-Service erstellen
* BOT-123 Sprachnachricht in WAV umwandeln

Geplanter Stand

Seite 12 / 19

BOT-23: Komponente zur Umwandlung von Text zu Sprache (TTS)

Neben der bereits vorhandenen Funktion Textnachrichten vom Beuthbot zu erhalten, sollen Nutzer
die Möglichkeit bekommen ebenfalls Sprachnachrichten zu empfangen. Hierfür wird eine
Komponente zur Konvertierung von Text in Sprache (Eng: „Text-To-Speech (TTS)) benötigt. Dieses
Feature soll dem Nutzer in künftigen, dem Beuthbot hinzugefügten, Messenger-Diensten zur
Verfügung stehen. Zur Umsetzung soll optimalerweise von einer Library Gebrauch gemacht werden,
welche den Anforderungen gerecht wird.

Initiale Schätzung 1 Tag

Technologien Javascript

Abhängigkeiten * BOT-43: Erstellung eines Common-Frameworks für (Content-
)Services

Anforderungen * Support für die deutsche Sprache
* Sprachnachrichten lassen sich als MP3- und WAV-Dateien
exportieren
* Das Feature ist bzgl. Opt-in oder Opt-out in den Hilfe-
Texten/Begrüßungsnachrichten des Beuthbots dokumentiert

Nice to Haves Sprachgeschwindigkeit und Stimme des Sprechers sind
konfigurierbar

Tasks * BOT-24 Recherche nach geeignetem Tool (TTS)
* BOT-25 Eigene Implementierung (TTS)
* BOT-98 Integration in Beuthbot

Geplanter Stand

Seite 13 / 19 https://ds-maximum.de

BOT-55: Erinnerungs-Service: Behandelt „erinnere mich“ Befehle und erinnert bei Fälligkeit autonom

Erinnerungen schedulen zu können ist ein typischer, weil praktischer, Anwendungsfall in beliebten
(Business) Kommunikations-Services wie Slack oder Mattermost. In beiden Fällen wird diese
Funktionalität durch die hauseigenen Reminder-Bots zur Verfügung gestellt.
Um die Featuredichte des BHT-Bot zu erhöhen wird ein Reminder-Service erstellt, durch den
identische Funktionalität wie bei genannten Diensten zur Verfügung stellt. Durch die Multi-
Messenger-Fähigkeit des BHT-Bot wird dieses Feature somit auch für User angeboten, deren
Kommunikations-Plattform keinen eigenen Reminder-Bot anbietet.
BeispielAnfragen:
* Erinnere mich am 22.10. an die Klausur in Mathe
* Erinnere mich jeden Donnerstag um 18 Uhr an den Ballettkurs
* Erinnere mich jedes Jahr am 01.01 an den Geburtstag meiner Mutter.
* Erinnere mich in 10 Tagen das Probeabonnement zu kündigen
* <Erinnere> <Zeitpunkt/Zeitspanne/Interval> <Thema>

Initiale Schätzung 3 Tage

Technologien * Javascript
* Docker
* Rasa
* MongoDB
* Cronjob

Abhängigkeiten * BOT-43
* BOT-30
* BOT-12
* BOT-49

Anforderungen * Erfolgreiche „erinnere“-Anfragen werden vom Dienst durch
Bestätigung der erkannten und persistierten Daten
beantwortetoder
* Fehlerhafte “erinnere”-Anfragen werden durch ein Mini-
Usage-Tutorial beantwortet, damit der User seine Anfrage
korrigieren kann
* Erinnerungen werden auf user-ebene (clientunabhängig)
gespeichert, so dass ein User die gleichen Erinnerungen in
allen genutzten Clients zur Verfügung hat
* Erinnerungen werden bei Fälligkeit einmalig (an alle clients
des users) ausgespielt
* Wiederkehrende Erinnerungen werden ausgespielt und
anschließend an Hand des Intervals neu terminiert
* Der Nutzer kann Erinnerungen löschen
* Der Nutzer kann seine Erinnerungen anzeigen lassen
* Der Service wird als Docker Container via docker-compose
verwaltet und in das BHT-Repository integriert
* Der Service nutzt das (noch zu schaffende) Content-Service-
Framework
* Wenn der Reminder-Service nach einem Ausfall wieder aktiv
wird erinnert er nicht (einzeln) an alle Termine, die
zwischenzeitig fällig waren
* Der Serive ist in Hilfe-Texten des (Chat) BHT-Bots integriert

Geplanter Stand

Seite 14 / 19

Tasks * BOT-57 Rasa Anbindung „Erinnere“-Direktive
* BOT-58 Service Endpoint speichert Reminder und Antwortet
auf Probleme
* BOT-59 Scheduler/Cronjob prüft und sendet regelmäßig
fällige Erinnerungen
* BOT-60 Dokumentation Service Usage
* BOT-109 Deployment / Release
* BOT-112 Hilfe-Texte in (Chat)BHT-Bot help-command /
willkommensnachricht

Geplanter Stand

Seite 15 / 19 https://ds-maximum.de

BOT-82: Termin-Scraper, der automatisch Erinnerungen aus öffentlichen Quellen bezieht

Es gibt Termine, an die wollen alle Studierenden typischerweise erinnert werden, als auch Termine,
von denen die Universität möchte, dass die Studierende sich daran erinnern. Typische Beispiele
hierfür sind Rückmeldefristen und (Beuth-eigene) Feiertage.
Durch einen Webscraper sollen solche Termine aus (öffentlichen) Quellen automatisch bezogen und
dann an alle Studierenden ausgespielt werden.
Auch wenn dieses Feature für die meisten Studierenden interesssant sein dürfte, muss es eine
Möglichkeit zum Opt-Out geben. Ggf. ist sogar angezeigt, dass ein Opt-In erfolgt, was allerdings den
Nutzen des Features, vor allem aus Universitätssicht, mindern würde.

Initiale Schätzung 1 Tag

Technologien * Javascript
* Docker
* HTML-DOM

Abhängigkeiten * BOT-55

Anforderungen * Relevante Termine werden regelmäßig, automatisch bezogen
und als Erinnerung gespeichert
* User können “globale Erinnerungen” aktivieren oder deaktivieren
* Das Feature ist resistent gegen Änderungen an den Domains
oder deren Struktur → Fallen gescrapete Dienste länger aus wird
dies reported
* Das Feature wird als nicht-eigenständig in den Reminder Service
integriert
* Das Feature ist bzgl. Opt-in oder Opt-out in den Hilfe-
Texten/Begrüßungsnachrichten des BHT-Bot dokumentiert

Tasks * BOT-83 Prüfen ob Opt-In (nötig ist) oder Opt-Out (möglich ist)
* BOT-84 Quellen mit relevanten Terminen zusammentragen - auf
Scrapebarkeit achten
* BOT-85 Scraping (mittels Scapring-Service) implementieren
* BOT-86 Termine aus Scraping in Erinnerungs Datenbank
überführen
* BOT-87 Rasa Direktive Opt-In oder Opt-Out implementieren
* BOT-88 Error-Reporting implementieren, bei Misslungenen
Scraping (über gewisse Zeit hinweg)
* BOT-114 Opt-In oder Opt-Out in Hilfe-Texten /
Willkommensnachricht dokumentieren

Geplanter Stand

Seite 16 / 19

BOT-89: Moodle iCal import als Erinnerungen

Moodle ist die zentrale Online-Lernplattform der Beuth Hochschule. Kurse, die in Moodle verwaltet
werden erhalten in der Regel Abgabetermine für Aufgaben, die während des Semesters fällig
werden. Oftmals stehen diese Abgabetermine bereits zu Beginn des Semesters in Moodle fest und
können dort in einer Kalenderansicht betrachtet werden.
Moodle bietet außerdem eine Funktion zum Export der Eintragungen im eigenen Kalender:
https://lms.beuth-hochschule.de/calendar/export.php
Der User kann hier einen Link erzeugen, über den eine iCal Datei bezogen werden kann. Diese Datei
enthält die Semestertermine und kann entsprechend in Erinnerungen des Bots umgewandelt
werden

Initiale Schätzung 1 Tag

Technologien * Javascript
* iCal
* Rasa

Abhängigkeiten * BOT-55

Anforderungen * Der User kann dem Bot seinen Moodle-Kalender-Export-Link
senden um einen Import auszulösen
* Die iCal Datei hinter dem Export-Link wird in Erinnerungs-
Einträge des Erinnerungs-Service umgewandelt
* Erinnerungen an Abgabetermine erfolgen zu Beginn des
Tages / zeitlich versetzt vor der Fälligkeit der Abgabe, nicht
zum im Kalender angegebenen Zeitpunkt
* Das Moodle-Import Feature wird nicht-eigenständig in den
Reminder-Service integriert
* Das Feature (und seine Nutzung) ist in der BHT-Bot Hilfe
gelistet

Tasks * BOT-90 Import Moodle Rasa Direktive
* BOT-91 Moodle iCal Download via zentralem Scaper Service
* BOT-92 iCal Parsing und Persistierung als (sinnvolle)
Erinnerung
* BOT-111 Feature Release
* BOT-113 Hilfe-Texte in (Chat)BHT-Bot help-command /
willkommensnachricht

https://lms.beuth-hochschule.de/calendar/export.php

Geplanter Stand

Seite 17 / 19 https://ds-maximum.de

BOT-75: Begrüßungsnachricht

Neue Benutzer des BeuthBots sollen mit einer Begrüßungsnachricht empfangen werden. Diese
Nachricht soll die Features des BeuthBots vorstellen und einen Shortcut nennen, welchen die
Benutzer verwenden können, wenn sie Hilfe benötigen. Mit dem Shortcut listet der BeuthBot
nochmals all seine Features auf.

Initiale Schätzung 1 Tag

Technologien * JavaScript

Abhängigkeiten Keine

Anforderungen * Die Begrüßungsnachricht erscheint nur für neue Benutzer
* Das System sollte einen Shortcut zur Wiedervorstellung der
Features bereitstellen, falls Benutzer Hilfe brauchen
* Das System muss in der Lage sein, auf die Hilfeanfrage.
des Benutzers mit Hilfe des Shortcuts innerhalb von 1,5
Sekunden zu antworten
* Das System sollte gut dokumentiert sein
* Das System sollte leicht zu verstehen sein

Tasks * BOT-93 Client
* BOT-94 Server
* BOT-132 Server fragt alle anderen Server was sie können/
machen und gibt das dann aus

Geplanter Stand

Seite 18 / 19

BOT-11: Universeller Scraper & Download

Der Beuthbot soll einen „universellen“ Web-Scraper beinhalten, der als Grundlage für künftige
Features dienen soll, die für konkrete Scraping-Funktionalitäten vorgesehen sind. Aufgrund der
hohen Diversität an Datenstrukturen unterschiedlicher Webseiten, soll dieser möglichst abstrakte
Funktionalitäten zur Extrahierung von Datensätzen bieten.

Initiale Schätzung 1 Tag

Technologien Javascript

Abhängigkeiten * BOT-43: Erstellung eines Common-Frameworks für
(Content-)Services

Anforderungen *Import von HTML- und XML-Dateien
*Daten lassen sich im JSON-Format exportieren
*Datensätze sind per HTML-Tags und CSS-Selektoren
extrahierbar
*Dateien einer Webseite lassen sich downloaden

Tasks * BOT-26 Recherche nach geeignetster Methode (HTML-
JSON)

Geplanter Stand

Seite 19 / 19 https://ds-maximum.de

BOT-15: Personalliste der Beuth-Hochschule im BeuthBot abrufbar machen

Dem Bot wird eines neues Feature hinzugefügt. Dieses Feature soll dem Benutzer des BeuthBots ein
Abfrage von Informationen über das Personal der Beuth Hochschule(BHT) ermöglichen
Ablauf:
Der Benutzer teilt dem Bot über einen Befehl mit (“Wer ist Max Mustermann?”, “Welche Person hat
die E-Mail mail@mail.com?”, “Welche Personen sitzen in Raum B001?”) , dass er Informationen über
eine oder mehrere Personen erhalten möchte. Der Bot prüft dann die mitgegebenen Informationen
und gibt dann aus:
* Wenn er passende Daten in der Datenbank findet:
- Auflistung der angefragen Daten
* Wenn er keine passenden Daten finden kann:
- Meldung, das die Suche erfolglos war
Weitere Informationen:
Die Informationen über das Personal werden in einer Tabelle in der Datenbank gespeichert und von
dort abgerufen. Diese Informationen können jederzeit aktuallisiert werden.
Spätere Erweiterungsmöglichkeiten:
Zunächst werden nur Entwickler Zugriff auf das Bearbeiten der Daten besitzen, für eine spätere
Ausbaustufe ist aber eine Verwaltung der Daten mittels dafür berechtigter User vorstellbar.
Die Einbindung der Personaldaten kann über einen Scrapper auf der Seite der Personalliste auch
persepektivisch komplett automatisiert werden.
Die Daten in der Datenbank können mit neuen Informationen erweitert werden. (Persönliches,
Sprechzeiten, etc.)

Initiale Schätzung 3 Tage

Technologien * Javascript
* mongodb

Abhängigkeiten keine

Anforderungen * Auslesen der Personalliste der BHT
* Einbau einer Speichermöglichkeit in der Datenbank
* Speichern der ausgelesenen Informationen in der
Datenbank
* Schnittstelle zur Bearbeitung der Daten erstellen
* Anlegen eines neuen Service „Personalliste“ im Bot
* Service zur Verwendung für die Benutzer abrufbar
machen

Tasks * BOT-17 - initiales Auslesen der Personalliste
* BOT-18 - Abrufen der Information aus der Personalliste
* BOT-19 - Erkennung der Benutzeranfrage zur
Personensuche
* BOT-96 - Bearbeiten der Daten der Personalliste
* BOT-125 - Erstellen einer neuen Tabelle „Personalliste“
in der Datenbank

Nutzungshinweis: Auf dieses vorliegende Schulungs- oder Beratungsdokument (ggf.) erlangt der
Mandant vertragsgemäß ein nicht ausschließliches, dauerhaftes, unbeschränktes, unwiderrufliches
und nicht übertragbares Nutzungsrecht. Eine hierüber hinausgehende, nicht zuvor durch
datenschutz-maximum bewilligte Nutzung ist verboten und wird urheberrechtlich verfolgt.

	Geplanter Stand
	Präambel
	Content First
	Redundanter Code / Wartbarkeit der Microservices
	Qualitätsmanagement
	Dokumentation

	Übersicht geplante Tasks und Abhängigkeiten
	Architektur
	Aufgaben Spezifikation

