ﬁ datenschutz-maximum Version 22.11.2020 19:58, Seite 1/ 12

BOT-16: Support mehrerer Messenger-Typen durch Umbau der Benutzererkennung
Aktueller Stand:

Der BeuthBot unterstitzt aktuell nur eine Verwendung uUber Telegram. Die Telegram-ID des
Benutzers wird in der Datenbank gespeichert.
Diese wird dann verwendet, um individuelle Informationen zu dem Benutzer abrufen zu kénnen.

Geplanter Umbau:

In Zukunft sollen flr den BeuthBot mehrere Kontaktmaéglichkeit zur Verfligung gestellt werden.
Damit ein Benutzer aber auch unabhangig vom Messenger erkannt wird muss der BeuthBot
angepasst werden:

1. Umbau der Datenbank damit mehrere Messenger-IDs gespeichert werden kénnen

2. Umbau der Erkennung des Messengers

3. Vereinfachen der Erkennung, damit ein zukinfiger Support von neuen Messengern einfach und
schnell erfolgen kann.

Initiale Schatzung 3 Tage

Technologien * Javascript
* mongodb

Abhangigkeiten keine

Anforderungen * einzelne Speicherung der Telegram-ID aus der Datenbank
entfernen

* Neue Spalte zur Verwaltung aller Benutzer-IDs

* vereinfachter Einbau von neuen Messengern
gewabhrleisten

* Abhangigkeit von der Telegram-ID entfernen

* Mehrere Messenger verfugbar machen

* Anmeldung eines neuen Benutzers

* Loschen eines Benutzers/Messengers

* Anmeldung eines neuen Messengers flr ein bestehenden
Benutzer

Tasks * BOT-20 - Umbau der Datenbank - Speicherung von
mehreren Accounts flr einen Benutzer
* BOT-21 - Anmeldung eines neuen Accounts flr einen
Benutzer
* BOT-22 - Loschen eines bestehenden Accounts flr einen
Benutzer
* BOT-97 - Methodik zur einfachen Erweiterung der
unterstitzten Messenger

BOT-12: Rasa 2.0 Update

Um die neusten Funktionen und Fixes von Rasa zu benutzen, ist ein Update von Version 1.6 auf 2.0
notwendig.

Initiale Schatzung 3 Tage
Technologien * Python
* Rasa

https://wiki.ziemers.de/wiki/software/beuthbot/berichte/ws2020/zwischen/geplanter-stand-features?rev=1606071518 Gedruckt 01.02.2026
12:40



geplanter-stand-features

Abhangigkeiten keine

Anforderungen * Kompatibilitat mit bestehenden NLU-Trainingsdaten erhalten
* Mogliche JSON- und MarkDown-Dateien in YAML-Datein umwandeln

Tasks * BOT-62: Config Anpassen
* BOT-63: Duckling updaten
* BOT-64: Modell neu trainieren
* BOT-116: Performance zwischen Version 1.6 und 2.0 vergleichen

BOT-30: Chatbot Library: Vereinheitlichung der Kommunikation von Javascript Chatbots mit dem
Gateway

Problem: Derzeit muss jede Anwendung, die den BHT-Bot als Chatbot implementieren méchte
selbst implementieren, wie die Kommunikation zwischen Anwendung und Gateway aussieht, als
auch die Schnittstellen Parameter in Anfrage und Antwort.

Um diese Implementationsredundanz zu verhindern, wird die Kommunikation und Typedefinitionen
in einer zentralen Javascript Bibliothek zusammengefasst.

Dies ermdglicht auch weitere geplante Funktionalitaten (wie der asymmetrische
Kommnuikationskanal zur Requestunabhangigen Server - Client Kommunikation ) zentral
entwickelt und mittels Dependency Management schnell in die ChatClients Uberfuhrt werden.

Initiale Schatzung 1 Tag

Technologien * Javascript
* Typescript

Abhangigkeiten keine

Anforderungen * Die Library lasst sich in Node und Browser Javascript
einbinden

* Die Library nutzt semantische Versionierung zur
Ermadglichung von Non-Breaking-Updates

* Die fertige Library lasst sich via Dependency-Management
(npm/yarn/webpack) userseitig einbinden und updaten

* Die Library enthalt typisierte (typescript) Entitaten fur
Common Request und Response Format(e)

* Die Library enthalt Unit-Tests fur essentielle Funktionen
und Typen

* Die Library ist dokumentiert, sowohl was Nutzung, als auch
Contribution angeht

* Die Library verbessert die Collaboration mittels Linting-
Regeln und Workflow-Scripten

Tasks * BOT-33 Library Usage Dokumentieren
* BOT-34 Library in Discord Bot integrieren
* BOT-35 Library in Telegram Bot integrieren
* BOT-36 Library in Website integrieren
* BOT-31 Common Funktionalitat / Use Cases identifizieren
* BOT-32 Typescript Library fur Bot erstellen

BOT-74: Webseite

Um eine komplette Ubersicht fir alle genutzten BeuthBot-Resourcen zu haben, soll eine Webseite
zur Prasentation dieser Ressourcen erstellt werden. Zu den Ressourcen zahlen das Ziemer's Wiki,
Telegram, Discord, Github und die Implementation des Chatbots.

Seite 2 /12



geplanter-stand-features

Initiale Schatzung

Technologien

Frameworks/ Libraries

Abhangigkeiten

Anforderungen

Tasks

3 Tage

* TypeScript
* JavaScript

* Angular
* Bootstrap

*BOT-10
*BOT-30

* Jeder Ressource wird ein Abschnitt gewidmet, welcher
Infos & einen Link zu der jeweiligen Ressource enthalt

* Anschauliches, Einheitliches und responsive Design
der Webseite

* leicht austauschbare Komponenten

* Das System sollte eine Ansicht innerhalb von 3
Sekunden laden

* Das System sollte gut dokumentiert sein

* Das System sollte leicht zu verstehen sein

* BOT-76 Webseite Einrichten

* BOT-77 Infos zum Wiki

* BOT-78 Infos zu Telegram

* BOT-79 Infos zu Discord

* BOT-80 Infos zu GitHub

* BOT-81 Implementation Chatbot

* BOT-130 Notifications wenn Nachricht vom Chatbot
* BOT-131 Responsive

BOT-49: User-Messenger-Service: Nachricht proaktiv, requestunabhangig an Clients senden

Der BHT-Bot kann bisher nur passiv auf Anfragen warten und diese dann beantworten. Zur
Implementierung von asymmetrischer bzw. request-unabhangiger Kommunikation bendtigt der Bot
einen neuen Service, der als Schnittstelle fur diese Art von Kommunikation dient.

Initiale Schatzung 2.5 Tage

Technologien * Javascript
* Websockets
* Docker

Abhangigkeiten ~ * BOT-30

Seite 3/12

https://ds-maximum.de



geplanter-stand-features

Anforderungen

Tasks

* Der User-Messenger-Service kann eine Nachricht an einen User (via Client-
Unabhangiger User-ID) senden

* Wenn ein User mehrere Clients benutzt, wird die Nachricht an alle Clients
gesendet

* Wenn ein User (Uber langere Zeit) nicht erreichbar ist wird die Kennung entfernt
* Wenn eine Nachricht nicht an einen User gesendet werden kann bekommt der
auslosende Service diese Information unterscheidbar zwischen a) Der Nutzer ist
gerade nicht erreichbar b) Der Nutzer ist dauerhaft nicht erreichbar (geldscht) c)
Der Dienst ist generell unhealthy

* Der Service wird als Docker Image via docker-compose in die BHT-Bot
Infrastruktur integirert. Er ist Teil des BHT-Bot Repositories

* Die Funktionalitat des Services wird auf Clientseite in die Common-Chatbot-
Library (BOT-30)

* Alle bestehenden ChatBot-Services werden an den Messenger Service
angebunden (Telegram, Discord)

* BOT-50 Websocket Registry fir ChatBotClients

* BOT-51 REST-Service fur Nachrichtenversand

* BOT-52 Implementation der Websocket-Registrierung in Common-Library far
Chatbots

* BOT-53 Implementierung der Common-Library-Websocket-Registrierung in
TelegramBot

* BOT-54 Implementierung der Common-Library-Websocket-Registrierung in
DiscordBot

* BOT-56 Dokumentation Usage Service

* BOT-110 Deployment / Release

BOT-37: Discord Integration

Discord ist eine weit verbreitete Kommunikatinsplattform, auf der Nutzer sich in ,Servern“
vernetzen und dort meist thematisch organisiert kommunizieren kénnen. Die Projektgruppe des
WS2020 ist selbst Teil der Zielgruppe des Discord-Messengers, wodurch sich diesese Plattform
besonders eignet um einen weiteren Chatservice (neben Telegram) an den BHT-Bot anzubinden.
Eine Implementation des Chatbots innerhalb der Discord-Struktur steigert somit zum Einen die
Verbreitung(smdoglichkeit) des BHT-Bot und bietet gleichzeitig eine gute Mdglichkeit Debug-Bot-
Instanzen im praferierten Messenger zu betreiben.

Initiale Schatzung

Technologien

Abhangigkeiten

2 Tage

* Javascript
* Docker

*BOT-30

Seite 4 /12



geplanter-stand-features

Anforderungen * Der Discourse Bot benutzt die zu entwickelnde zentralisierte Library
zur Gateway Kommunikation um Coderedundanz mit dem Telegram
Bot zu verhindern
* Der Discourse Bot kann (direkte) Nutzer-Nachrichten mittels
Gateway verarbeiten und antwortet dem User entsprechend
* Wenn keine Verbindung mit dem Gateway besteht oder Fehler bei
Anfragen auftreten reagiert der Chatbot durch Prasentation einer
hilfreichen Fehlermeldung
* Der Discourse Bot wird aquivalent zum Telgram Bot in das BHT-Bot
Universum mittels Docker + compose integriert
* Der Discourse Bot ist nicht Teil des BHT Bot, er wird als paralleler,
unabhangiger Service betrieben
* Alle Credentials und Urls/Ports werden aus dem Environment
bezogen, es gibt keine hard-coded Referenzen zu Strukturen des
BHT-Bot Gateways

Tasks * BOT-38 NodeJS Chatbot erstellen
* BOT-39 Docker Container + Compose fur Container erstellen
* BOT-40 Bot Usage dokumentieren
* BOT-41 Bot Account anlegen fur release
(https://discord.com/developers/applications)
* BOT-42 Bot Container in Beuth-Docker-Netzwerk einbinden (release)

BOT-43: Erstellung eines Common-Frameworks fur (Content-)Services

Services im BHT-Bot kommunizieren alle Gber REST-Schnittstellen. Diese sind alle als Express-
Anwendung mit JSON-Kommunikation implementiert, was fur viel Code-Redundanz fihrt.
Gleichzeitig benutzt kein Service strukturierte Darstellungen der Schnittstellen, wie Anfragen und
Antworten zum Gateway, User Daten oder Rasa-Intents.

Ein spezieller, repititiver, Unterfall der Microservices sind solche, die Content bereitstellen. Diese
erhalten alle Nachrichten vom Gateway und senden ihre antworten auch dort wieder zurick.
Request- und Response sind durch das Gateway definiert, die resultierende Struktur ist
entsprechend flr alle Contentservices prinzipiell Identisch.

Zur Vermeidung von Code-Redundanzen und Erleichterung des ,Kick-Off* eines neuen Content-
Services sollen die Common Funktionen und Entitaten in ein Framework gegossen werden

Initiale Schatzung 1 Tag

Technologien * Javascript
* Typescript
* Dockerfile

Abhangigkeiten * BOT-37

Seite 5/12 https://ds-maximum.de


https://discord.com/developers/applications

geplanter-stand-features

Anforderungen * Das Framework implementiert eine NodeJS Express REST-
API, aquivalent zu den existierenden Content-Services
* Das Framework Iasst sich in Node)S Anwendungen via
Dependency-Management einbinden (npm/yarn)
* Das Framework abstrahiert den (Express) Server und dessen
Routing, so dass ein Contentservices nur noch die Response
implementieren muss
* Das Framework implementiert die Schnittstelle zum
Datenbankservice um a) Userdaten zu speichern/abzurufen
und b) eigene Daten zu speicher und abzurufen
* Das Framework flllt die “debug-history” der Requests so,
dass ein Service dieses Feature zwangsweise implementiert /
nutzt
* Requests, Responses, User, Rasa-Intents und ggf. weitere
Entitaten werden durch das Framework als typisierte
(typescript) Objekte definiert
* Das Framework wird in allen bestehenden und geplanten
Content-Services implementiert: Wetter, Mensa, Reminder
* Die Nutzung des Frameworks ist verstandlich dokumentiert
* Die Contribution wird mittels Linting, Dokumentation und
Build-Scripts erleichtert
* Das Framework nutzt types aus der (noch zu entwickelnde)
BHT-Bot Library um Redundanzen zwischen Client-Bibliothem
und Service-Framwork zu vermeiden

Tasks * BOT-44 Common Code, Features, Entitaten identifizieren -»
Use Case ableiten
* BOT-45 Typisiertes Javascript Framework erstellen
* BOT-46 Framework einbinden in Weather Service
* BOT-47 Framework einbinden in Mensa Service
* BOT-48 Framework einbinden in Reminder Service
* BOT-108 Framework dokumentieren
* BOT-117 Request History implementieren - Nutzung enforcen

BOT-13: Komponente zur Umwandlung von Sprache zu Text (STT)

Es soll ermdglicht werden, dass Benutzern neben Textnachrichten auch mittels Sprachnachrichten
mit dem BeuthBot kommunizieren kénnen. Dabei sollen die Sprachnachrichten mittels eines neuen
Services in Text Ubersetzt werden und dann wie andere Textnachrichten verarbeitet werden. Hierzui
sollen 3 bekannte STT-Frameworks (Kaldi, Mozilla Voice STT und Wav2Letter) getestet und
vergleichen werden. Basierend darauf soll eine Entscheidung getroffen werden, welches Framework
schlussendlich in der Production-Environment verwendet werden soll. Das Framework wird dann in
Form eines neuen Micro-Services in den BeuthBot integriert.

Initiale Schatzung 3 Tage
Programmiersprachen * Python (Mozilla Voice STT)
* C++ (Kaldi, WAV2Letter)
* Kaldi
* Mozilla Voice STT
* WAV2Letter
Abhangigkeiten * BOT-43: Erstellung eines Common-Frameworks fur

(Content-)Services

Seite 6 /12



geplanter-stand-features

Anforderungen

Tasks

* Die Ubersetzung soll mittels neuronaler Netzte
geschehen

* Nur Sprachnachrichten auf Deutsch sollen Ubersetzt
werden

* Das verwendete Framework muss OpenSource sein
und Lokal auf dem BeuthBot-Server ausfuhrbar sein

* Es soll keine Model-Adapation durchgefuhrt werden

* BOT-69 WAV2Letter testen

* BOT-70 Mozilla Voice testen

* BOT-73 Kaldi testen

* BOT-71 Framework aussuchen

* BOT-122 Micro-Service erstellen

* BOT-123 Sprachnachricht in WAV umwandeln

BOT-23: Komponente zur Umwandlung von Text zu Sprache (TTS)

Neben der bereits vorhandenen Funktion Textnachrichten vom Beuthbot zu erhalten, sollen Nutzer
die Maglichkeit bekommen ebenfalls Sprachnachrichten zu empfangen. Hierflr wird eine
Komponente zur Konvertierung von Text in Sprache (Eng: , Text-To-Speech (TTS)) bendtigt. Dieses
Feature soll dem Nutzer in kiinftigen, dem Beuthbot hinzugefligten, Messenger-Diensten zur
Verflgung stehen. Zur Umsetzung soll optimalerweise von einer Library Gebrauch gemacht werden,
welche den Anforderungen gerecht wird.

Initiale Schatzung
Technologien

Abhangigkeiten

Anforderungen

Nice to Haves

Tasks

1 Tag
Javascript

* BOT-43: Erstellung eines Common-Frameworks fur (Content-
)Services

* Support fur die deutsche Sprache

* Sprachnachrichten lassen sich als MP3- und WAV-Dateien
exportieren

* Das Feature ist bzgl. Opt-in oder Opt-out in den Hilfe-
Texten/BegruBungsnachrichten des Beuthbots dokumentiert

Sprachgeschwindigkeit und Stimme des Sprechers sind
konfigurierbar

* BOT-24 Recherche nach geeignetem Tool (TTS)
* BOT-25 Eigene Implementierung (TTS)
* BOT-98 Integration in Beuthbot

BOT-55: Erinnerungs-Service: Behandelt ,,erinnere mich” Befehle und erinnert bei Falligkeit autonom

Seite 7/ 12

https://ds-maximum.de



geplanter-stand-features

Erinnerungen schedulen zu kénnen ist ein typischer, weil praktischer, Anwendungsfall in beliebten
(Business) Kommunikations-Services wie Slack oder Mattermost. In beiden Fallen wird diese
Funktionalitat durch die hauseigenen Reminder-Bots zur Verflgung gestellt.

Um die Featuredichte des BHT-Bot zu erhdhen wird ein Reminder-Service erstellt, durch den
identische Funktionalitat wie bei genannten Diensten zur Verfigung stellt. Durch die Multi-
Messenger-Fahigkeit des BHT-Bot wird dieses Feature somit auch fur User angeboten, deren
Kommunikations-Plattform keinen eigenen Reminder-Bot anbietet.

BeispielAnfragen:

* Erinnere mich am 22.10. an die Klausur in Mathe

* Erinnere mich jeden Donnerstag um 18 Uhr an den Ballettkurs

* Erinnere mich jedes Jahr am 01.01 an den Geburtstag meiner Mutter.

* Erinnere mich in 10 Tagen das Probeabonnement zu kindigen

* <Erinnere> <Zeitpunkt/Zeitspanne/Interval> <Thema>

Initiale Schatzung 3 Tage

Technologien * Javascript
* Docker
* Rasa
* MongoDB
* Cronjob

Abhangigkeiten *BOT-43
* BOT-30
* BOT-12
* BOT-49

Anforderungen * Erfolgreiche ,erinnere“-Anfragen werden vom Dienst durch
Bestatigung der erkannten und persistierten Daten
beantwortetoder
* Fehlerhafte “erinnere”-Anfragen werden durch ein Mini-
Usage-Tutorial beantwortet, damit der User seine Anfrage
korrigieren kann
* Erinnerungen werden auf user-ebene (clientunabhangig)
gespeichert, so dass ein User die gleichen Erinnerungen in
allen genutzten Clients zur Verflgung hat
* Erinnerungen werden bei Falligkeit einmalig (an alle clients
des users) ausgespielt
* Wiederkehrende Erinnerungen werden ausgespielt und
anschliefend an Hand des Intervals neu terminiert
* Der Nutzer kann Erinnerungen l6schen
* Der Nutzer kann seine Erinnerungen anzeigen lassen
* Der Service wird als Docker Container via docker-compose
verwaltet und in das BHT-Repository integriert
* Der Service nutzt das (noch zu schaffende) Content-Service-
Framework
* Wenn der Reminder-Service nach einem Ausfall wieder aktiv
wird erinnert er nicht (einzeln) an alle Termine, die
zwischenzeitig fallig waren
* Der Serive ist in Hilfe-Texten des (Chat) BHT-Bots integriert

Seite 8/12



geplanter-stand-features

Tasks

* BOT-57 Rasa Anbindung ,Erinnere“-Direktive

* BOT-58 Service Endpoint speichert Reminder und Antwortet
auf Probleme

* BOT-59 Scheduler/Cronjob prift und sendet regelmalig
fallige Erinnerungen

* BOT-60 Dokumentation Service Usage

* BOT-109 Deployment / Release

* BOT-112 Hilfe-Texte in (Chat)BHT-Bot help-command /
willkommensnachricht

BOT-82: Termin-Scraper, der automatisch Erinnerungen aus o6ffentlichen Quellen bezieht

Es gibt Termine, an die wollen alle Studierenden typischerweise erinnert werden, als auch Termine,
von denen die Universitat mochte, dass die Studierende sich daran erinnern. Typische Beispiele
hierfur sind Ruckmeldefristen und (Beuth-eigene) Feiertage.

Durch einen Webscraper sollen solche Termine aus (6ffentlichen) Quellen automatisch bezogen und
dann an alle Studierenden ausgespielt werden.

Auch wenn dieses Feature fur die meisten Studierenden interesssant sein durfte, muss es eine
Moglichkeit zum Opt-Out geben. Ggf. ist sogar angezeigt, dass ein Opt-In erfolgt, was allerdings den
Nutzen des Features, vor allem aus Universitatssicht, mindern wurde.

Initiale Schatzung

Technologien

Abhangigkeiten

Anforderungen

Tasks

1 Tag

* Javascript
* Docker
* HTML-DOM

*BOT-55

* Relevante Termine werden regelmaliig, automatisch bezogen
und als Erinnerung gespeichert

* User kdnnen “globale Erinnerungen” aktivieren oder deaktivieren
* Das Feature ist resistent gegen Anderungen an den Domains
oder deren Struktur - Fallen gescrapete Dienste langer aus wird
dies reported

* Das Feature wird als nicht-eigenstandig in den Reminder Service
integriert

* Das Feature ist bzgl. Opt-in oder Opt-out in den Hilfe-
Texten/BegruBungsnachrichten des BHT-Bot dokumentiert

* BOT-83 Priufen ob Opt-In (nétig ist) oder Opt-Out (mdglich ist)
* BOT-84 Quellen mit relevanten Terminen zusammentragen - auf
Scrapebarkeit achten

* BOT-85 Scraping (mittels Scapring-Service) implementieren
* BOT-86 Termine aus Scraping in Erinnerungs Datenbank
uberfihren

* BOT-87 Rasa Direktive Opt-In oder Opt-Out implementieren

* BOT-88 Error-Reporting implementieren, bei Misslungenen
Scraping (Uber gewisse Zeit hinweg)

* BOT-114 Opt-In oder Opt-Out in Hilfe-Texten /
Willkommensnachricht dokumentieren

BOT-89: Moodle iCal import als Erinnerungen

Seite 9/12

https://ds-maximum.de



geplanter-stand-features

Moodle ist die zentrale Online-Lernplattform der Beuth Hochschule. Kurse, die in Moodle verwaltet
werden erhalten in der Regel Abgabetermine fir Aufgaben, die wahrend des Semesters fallig
werden. Oftmals stehen diese Abgabetermine bereits zu Beginn des Semesters in Moodle fest und
kénnen dort in einer Kalenderansicht betrachtet werden.

Moodle bietet aulerdem eine Funktion zum Export der Eintragungen im eigenen Kalender:
https://Ims.beuth-hochschule.de/calendar/export.php

Der User kann hier einen Link erzeugen, Uber den eine iCal Datei bezogen werden kann. Diese Datei
enthalt die Semestertermine und kann entsprechend in Erinnerungen des Bots umgewandelt
werden

Initiale Schatzung 1 Tag
Technologien * Javascript
*iCal
* Rasa
Abhangigkeiten * BOT-55
Anforderungen * Der User kann dem Bot seinen Moodle-Kalender-Export-Link

senden um einen Import auszulésen

* Die iCal Datei hinter dem Export-Link wird in Erinnerungs-
Eintrdge des Erinnerungs-Service umgewandelt

* Erinnerungen an Abgabetermine erfolgen zu Beginn des
Tages / zeitlich versetzt vor der Falligkeit der Abgabe, nicht
zum im Kalender angegebenen Zeitpunkt

* Das Moodle-Import Feature wird nicht-eigenstandig in den
Reminder-Service integriert

* Das Feature (und seine Nutzung) ist in der BHT-Bot Hilfe
gelistet

Tasks * BOT-90 Import Moodle Rasa Direktive
* BOT-91 Moodle iCal Download via zentralem Scaper Service
* BOT-92 iCal Parsing und Persistierung als (sinnvolle)
Erinnerung
* BOT-111 Feature Release
* BOT-113 Hilfe-Texte in (Chat)BHT-Bot help-command /
willkommensnachricht

BOT-75: BegruBungsnachricht

Neue Benutzer des BeuthBots sollen mit einer BegriSungsnachricht empfangen werden. Diese
Nachricht soll die Features des BeuthBots vorstellen und einen Shortcut nennen, welchen die
Benutzer verwenden kénnen, wenn sie Hilfe benétigen. Mit dem Shortcut listet der BeuthBot
nochmals all seine Features auf.

Initiale Schatzung 1 Tag
Technologien * JavaScript
Abhangigkeiten Keine

Seite 10/ 12


https://lms.beuth-hochschule.de/calendar/export.php

geplanter-stand-features

Anforderungen

Tasks

* Die BegruBungsnachricht erscheint nur fir neue Benutzer

* Das System sollte einen Shortcut zur Wiedervorstellung der
Features bereitstellen, falls Benutzer Hilfe brauchen

* Das System muss in der Lage sein, auf die Hilfeanfrage.
des Benutzers mit Hilfe des Shortcuts innerhalb von 1,5
Sekunden zu antworten

* Das System sollte gut dokumentiert sein

* Das System sollte leicht zu verstehen sein

* BOT-93 Client

* BOT-94 Server

* BOT-132 Server fragt alle anderen Server was sie kénnen/
machen und gibt das dann aus

BOT-11: Universeller Scraper & Download

Der Beuthbot soll einen ,universellen“ Web-Scraper beinhalten, der als Grundlage flr kinftige
Features dienen soll, die fur konkrete Scraping-Funktionalitaten vorgesehen sind. Aufgrund der
hohen Diversitat an Datenstrukturen unterschiedlicher Webseiten, soll dieser maglichst abstrakte
Funktionalitaten zur Extrahierung von Datensatzen bieten.

Initiale Schatzung
Technologien

Abhangigkeiten

Anforderungen

Tasks

1 Tag
Javascript

* BOT-43: Erstellung eines Common-Frameworks fur
(Content-)Services

*Import von HTML- und XML-Dateien

*Daten lassen sich im JSON-Format exportieren
*Datensatze sind per HTML-Tags und CSS-Selektoren
extrahierbar

*Dateien einer Webseite lassen sich downloaden

* BOT-26 Recherche nach geeignetster Methode (HTML-
JSON)

BOT-15: Personalliste der Beuth-Hochschule im BeuthBot abrufbar machen

Seite 11 /12

https://ds-maximum.de



geplanter-stand-features

Dem Bot wird eines neues Feature hinzugefugt. Dieses Feature soll dem Benutzer des BeuthBots ein
Abfrage von Informationen Uber das Personal der Beuth Hochschule(BHT) ermdéglichen

Ablauf:

Der Benutzer teilt dem Bot Uber einen Befehl mit (“Wer ist Max Mustermann?”, “Welche Person hat
die E-Mail mail@mail.com?”, “Welche Personen sitzen in Raum B001?”) , dass er Informationen Uber
eine oder mehrere Personen erhalten mdchte. Der Bot pruft dann die mitgegebenen Informationen
und gibt dann aus:

* Wenn er passende Daten in der Datenbank findet:

- Auflistung der angefragen Daten

* Wenn er keine passenden Daten finden kann:

- Meldung, das die Suche erfolglos war

Weitere Informationen:

Die Informationen Uber das Personal werden in einer Tabelle in der Datenbank gespeichert und von
dort abgerufen. Diese Informationen kdnnen jederzeit aktuallisiert werden.

Spatere Erweiterungsmoglichkeiten:

Zunachst werden nur Entwickler Zugriff auf das Bearbeiten der Daten besitzen, flr eine spatere
Ausbaustufe ist aber eine Verwaltung der Daten mittels dafur berechtigter User vorstellbar.

Die Einbindung der Personaldaten kann Uber einen Scrapper auf der Seite der Personalliste auch
persepektivisch komplett automatisiert werden.

Die Daten in der Datenbank kdnnen mit neuen Informationen erweitert werden. (Personliches,
Sprechzeiten, etc.)

Initiale Schatzung 3 Tage
Technologien * Javascript
* mongodb
Abhangigkeiten keine
Anforderungen * Auslesen der Personalliste der BHT

* Einbau einer Speichermdglichkeit in der Datenbank
* Speichern der ausgelesenen Informationen in der
Datenbank

* Schnittstelle zur Bearbeitung der Daten erstellen

* Anlegen eines neuen Service ,Personalliste” im Bot
* Service zur Verwendung fur die Benutzer abrufbar
machen

Tasks * BOT-17 - initiales Auslesen der Personalliste
* BOT-18 - Abrufen der Information aus der Personalliste
* BOT-19 - Erkennung der Benutzeranfrage zur
Personensuche
* BOT-96 - Bearbeiten der Daten der Personalliste
* BOT-125 - Erstellen einer neuen Tabelle ,,Personalliste”
in der Datenbank

Nutzungshinweis: Auf dieses vorliegende Schulungs- oder Beratungsdokument (ggf.) erlangt der
Mandant vertragsgemald ein nicht ausschliel8liches, dauerhaftes, unbeschranktes, unwiderrufliches
und nicht Ubertragbares Nutzungsrecht. Eine hieruber hinausgehende, nicht zuvor durch
datenschutz-maximum bewilligte Nutzung ist verboten und wird urheberrechtlich verfolgt.

Seite 12 /12



