ﬁ datenschutz-maximum Version 22.11.2020 15:53, Seite 1/ 11

BOT-16: Support mehrerer Messenger-Typen durch Umbau der Benutzererkennung
Aktueller Stand:

Der BeuthBot
Geplanter Umbau:

Initiale Schatzung 3

Technologien * Javascript
* mongodb

Abhangigkeiten keine

Anforderungen * <Anforderung 1>
* <Anforderung 2>

Tasks * BOT-20 - Umbau der Datenbank - Speicherung von mehreren Accounts fir einen
Benutzer
* BOT-21 - Anmeldung eines neuen Accounts fir einen Benutzer
* BOT-22 - Loschen eines bestehenden Accounts fur einen Benutzer
* BOT-97 - Methodik zur einfachen Erweiterung der unterstitzten Messenger

BOT-12: Rasa 2.0 Update

Um die neusten Funktionen und Fixes von Rasa zu benutzen, ist ein Update von Version 1.6 auf 2.0
notwendig.

Zustanidigkeit Robert Halwal’

Initiale Schatzung 3 Tage

Programmiersprachen * Python

Frameworks/Libraries * Rasa

Services * NLU

Abhangigkeiten keine

Anforderungen * Kompatibilitat mit bestehenden NLU-Trainingsdaten erhalten
* Mogliche JSON- und MarkDown-Dateien in YAML-Datein
umwandeln

Tasks * BOT-124: docker-compose.yml anpassen

* BOT-61: Chatito Kompatibiltat testen

* BOT-62: Config Anpassen

* BOT-63: Duckling updaten

* BOT-64: Modell neu trainieren

* BOT-116: Performance zwischen Version 1.6 und 2.0 vergleichen

BOT-30: Chatbot Library: Vereinheitlichung der Kommunikation von Javascript Chatbots mit dem
Gateway

https://wiki.ziemers.de/wiki/software/beuthbot/berichte/ws2020/zwischen/geplanter-stand-features?rev=1606056784 Gedruckt 01.02.2026
10:54

geplanter-stand-features

Problem: Derzeit muss jede Anwendung, die den BHT-Bot als Chatbot implementieren mdéchte
selbst implementieren, wie die Kommunikation zwischen Anwendung und Gateway aussieht, als
auch die Schnittstellen Parameter in Anfrage und Antwort.

Um diese Implementationsredundanz zu verhindern, wird die Kommunikation und Typedefinitionen
in einer zentralen Javascript Bibliothek zusammengefasst.

Dies ermdglicht auch weitere geplante Funktionalitaten (wie der asymmetrische
Kommnuikationskanal zur Requestunabhangigen Server - Client Kommunikation) zentral
entwickelt und mittels Dependency Management schnell in die ChatClients uberfuhrt werden.

Initiale Schatzung 1

Technologien * Javascript
* Typescript

Abhangigkeiten keine

Anforderungen * Die Library lasst sich in Node und Browser Javascript einbinden * Die Library
nutzt semantische Versionierung zur Ermoglichung von Non-Breaking-Updates *
Die fertige Library lasst sich via Dependency-Management (npm/yarn/webpack)
userseitig einbinden und updaten * Die Library enthalt typisierte (typescript)
Entitaten fur Common Request und Response Format(e) * Die Library enthalt
Unit-Tests fur essentielle Funktionen und Typen * Die Library ist dokumentiert,
sowohl was Nutzung, als auch Contribution angeht * Die Library verbessert die
Collaboration mittels Linting-Regeln und Workflow-Scripten

Tasks * BOT-33 Library Usage Dokumentieren
* BOT-34 Library in Discord Bot integrieren
* BOT-35 Library in Telegram Bot integrieren
* BOT-36 Library in Website integrieren
* BOT-31 Common Funktionalitat / Use Cases identifizieren
* BOT-32 Typescript Library flr Bot erstellen

BOT-37: Discord Integration

Discord ist eine weit verbreitete Kommunikatinsplattform, auf der Nutzer sich in ,Servern”
vernetzen und dort meist thematisch organisiert kommunizieren kénnen. Die Projektgruppe des
WS2020 ist selbst Teil der Zielgruppe des Discord-Messengers, wodurch sich diesese Plattform
besonders eignet um einen weiteren Chatservice (neben Telegram) an den BHT-Bot anzubinden.
Eine Implementation des Chatbots innerhalb der Discord-Struktur steigert somit zum Einen die
Verbreitung(smaoglichkeit) des BHT-Bot und bietet gleichzeitig eine gute Moglichkeit Debug-Bot-
Instanzen im praferierten Messenger zu betreiben.

Initiale Schatzung 2

Technologien * Javascript
* Docker

Abhangigkeiten *BOT-30

Seite 2 /11

geplanter-stand-features

Anforderungen * Der Discourse Bot benutzt die zu entwickelnde zentralisierte Library
zur Gateway Kommunikation um Coderedundanz mit dem Telegram
Bot zu verhindern
* Der Discourse Bot kann (direkte) Nutzer-Nachrichten mittels
Gateway verarbeiten und antwortet dem User entsprechend
* Wenn keine Verbindung mit dem Gateway besteht oder Fehler bei
Anfragen auftreten reagiert der Chatbot durch Prasentation einer
hilfreichen Fehlermeldung
* Der Discourse Bot wird aquivalent zum Telgram Bot in das BHT-Bot
Universum mittels Docker + compose integriert
* Der Discourse Bot ist nicht Teil des BHT Bot, er wird als paralleler,
unabhangiger Service betrieben
* Alle Credentials und Urls/Ports werden aus dem Environment
bezogen, es gibt keine hard-coded Referenzen zu Strukturen des
BHT-Bot Gateways

Tasks * BOT-38 NodeJS Chatbot erstellen
* BOT-39 Docker Container + Compose fur Container erstellen
* BOT-40 Bot Usage dokumentieren
* BOT-41 Bot Account anlegen fir release
(https://discord.com/developers/applications)
* BOT-42 Bot Container in Beuth-Docker-Netzwerk einbinden
(release)

BOT-43: Erstellung eines Common-Frameworks fur (Content-)Services

Services im BHT-Bot kommunizieren alle Gber REST-Schnittstellen. Diese sind alle als Express-
Anwendung mit JSON-Kommunikation implementiert, was fur viel Code-Redundanz flhrt.
Gleichzeitig benutzt kein Service strukturierte Darstellungen der Schnittstellen, wie Anfragen und
Antworten zum Gateway, User Daten oder Rasa-Intents.

Ein spezieller, repititiver, Unterfall der Microservices sind solche, die Content bereitstellen. Diese
erhalten alle Nachrichten vom Gateway und senden ihre antworten auch dort wieder zurick.
Request- und Response sind durch das Gateway definiert, die resultierende Struktur ist
entsprechend flr alle Contentservices prinzipiell Identisch.

Zur Vermeidung von Code-Redundanzen und Erleichterung des ,Kick-Off* eines neuen Content-
Services sollen die Common Funktionen und Entitaten in ein Framework gegossen werden

Initiale Schatzung 1

Technologien * Javascript
* Typescript
* Dockerfile

Abhangigkeiten * BOT-37

Seite 3/11 https://ds-maximum.de

https://discord.com/developers/applications

geplanter-stand-features

Anforderungen

Tasks

* Das Framework implementiert eine NodeJS Express REST-
API, aquivalent zu den existierenden Content-Services

* Das Framework Iasst sich in Node)JS Anwendungen via
Dependency-Management einbinden (npm/yarn)

* Das Framework abstrahiert den (Express) Server und dessen
Routing, so dass ein Contentservices nur noch die Response
implementieren muss

* Das Framework implementiert die Schnittstelle zum
Datenbankservice um a) Userdaten zu speichern/abzurufen
und b) eigene Daten zu speicher und abzurufen

* Das Framework fillt die “debug-history” der Requests so,
dass ein Service dieses Feature zwangsweise implementiert /
nutzt

* Requests, Responses, User, Rasa-Intents und ggf. weitere
Entitaten werden durch das Framework als typisierte
(typescript) Objekte definiert

* Das Framework wird in allen bestehenden und geplanten
Content-Services implementiert: Wetter, Mensa, Reminder

* Die Nutzung des Frameworks ist verstandlich dokumentiert
* Die Contribution wird mittels Linting, Dokumentation und
Build-Scripts erleichtert

* Das Framework nutzt types aus der (noch zu entwickelnde)
BHT-Bot Library um Redundanzen zwischen Client-Bibliothem
und Service-Framwork zu vermeiden

* BOT-44 Common Code, Features, Entitaten identifizieren -
Use Case ableiten

* BOT-45 Typisiertes Javascript Framework erstellen

* BOT-46 Framework einbinden in Weather Service

* BOT-47 Framework einbinden in Mensa Service

* BOT-48 Framework einbinden in Reminder Service

* BOT-108 Framework dokumentieren

* BOT-117 Request History implementieren - Nutzung
enforcen

BOT-49: User-Messenger-Service: Nachricht proaktiv, requestunabhangig an Clients senden

Der BHT-Bot kann bisher nur passiv auf Anfragen warten und diese dann beantworten. Zur
Implementierung von asymmetrischer bzw. request-unabhangiger Kommunikation bendtigt der Bot
einen neuen Service, der als Schnittstelle fur diese Art von Kommunikation dient.

Initiale Schatzung 2.5

Technologien

Abhangigkeiten

* Javascript
* Websockets

Seite 4 /11

geplanter-stand-features

Anforderungen * Der User-Messenger-Service kann eine Nachricht an einen User (via Client-
Unabhangiger User-ID) senden
* Wenn ein User mehrere Clients benutzt, wird die Nachricht an alle Clients
gesendet
* Wenn ein User (Uber langere Zeit) nicht erreichbar ist wird die Kennung entfernt
* Wenn eine Nachricht nicht an einen User gesendet werden kann bekommt der
auslosende Service diese Information unterscheidbar zwischen a) Der Nutzer ist
gerade nicht erreichbar b) Der Nutzer ist dauerhaft nicht erreichbar (geldscht) c)
Der Dienst ist generell unhealthy
* Der Service wird als Docker Image via docker-compose in die BHT-Bot
Infrastruktur integirert. Er ist Teil des BHT-Bot Repositories
* Die Funktionalitat des Services wird auf Clientseite in die Common-Chatbot-
Library (BOT-30)
* Alle bestehenden ChatBot-Services werden an den Messenger Service
angebunden (Telegram, Discord)

Tasks * BOT-50 Websocket Registry flr ChatBotClients
* BOT-51 REST-Service fur Nachrichtenversand
* BOT-52 Implementation der Websocket-Registrierung in Common-Library far
Chatbots
* BOT-53 Implementierung der Common-Library-Websocket-Registrierung in
TelegramBot
* BOT-54 Implementierung der Common-Library-Websocket-Registrierung in
DiscordBot
* BOT-56 Dokumentation Usage Service
* BOT-110 Deployment / Release

BOT-55: Erinnerungs-Service: Behandelt ,,erinnere mich“ Befehle und erinnert bei Falligkeit autonom

Erinnerungen schedulen zu kénnen ist ein typischer, weil praktischer, Anwendungsfall in beliebten
(Business) Kommunikations-Services wie Slack oder Mattermost. In beiden Fallen wird diese
Funktionalitat durch die hauseigenen Reminder-Bots zur Verfligung gestellt.

Um die Featuredichte des BHT-Bot zu erh6hen wird ein Reminder-Service erstellt, durch den
identische Funktionalitat wie bei genannten Diensten zur Verfiigung stellt. Durch die Multi-
Messenger-Fahigkeit des BHT-Bot wird dieses Feature somit auch fur User angeboten, deren
Kommunikations-Plattform keinen eigenen Reminder-Bot anbietet.

BeispielAnfragen:

* Erinnere mich am 22.10. an die Klausur in Mathe

* Erinnere mich jeden Donnerstag um 18 Uhr an den Ballettkurs

* Erinnere mich jedes Jahr am 01.01 an den Geburtstag meiner Mutter.

* Erinnere mich in 10 Tagen das Probeabonnement zu kindigen

* <Erinnere> <Zeitpunkt/Zeitspanne/Interval> <Thema>

Initiale Schatzung 3

Technologien * Javascript
* Docker
* Rasa
* MongoDB
* Cronjob

Abhangigkeiten *BOT-43
* BOT-30
* BOT-12
* BOT-49

Seite 5/11 https://ds-maximum.de

geplanter-stand-features

Anforderungen

Tasks

* Erfolgreiche ,erinnere“-Anfragen werden vom Dienst durch
Bestatigung der erkannten und persistierten Daten
beantwortetoder

* Fehlerhafte “erinnere”-Anfragen werden durch ein Mini-
Usage-Tutorial beantwortet, damit der User seine Anfrage
korrigieren kann

* Erinnerungen werden auf user-ebene (clientunabhangig)
gespeichert, so dass ein User die gleichen Erinnerungen in
allen genutzten Clients zur Verfigung hat

* Erinnerungen werden bei Falligkeit einmalig (an alle clients
des users) ausgespielt

* Wiederkehrende Erinnerungen werden ausgespielt und
anschliefend an Hand des Intervals neu terminiert

* Der Nutzer kann Erinnerungen l6schen

* Der Nutzer kann seine Erinnerungen anzeigen lassen

* Der Service wird als Docker Container via docker-compose
verwaltet und in das BHT-Repository integriert

* Der Service nutzt das (noch zu schaffende) Content-Service-
Framework

* Wenn der Reminder-Service nach einem Ausfall wieder aktiv
wird erinnert er nicht (einzeln) an alle Termine, die
zwischenzeitig fallig waren

* Der Serive ist in Hilfe-Texten des (Chat) BHT-Bots integriert

* BOT-57 Rasa Anbindung , Erinnere“-Direktive

* BOT-58 Service Endpoint speichert Reminder und Antwortet
auf Probleme

* BOT-59 Scheduler/Cronjob prift und sendet regelmaRig
fallige Erinnerungen

* BOT-60 Dokumentation Service Usage

* BOT-109 Deployment / Release

* BOT-112 Hilfe-Texte in (Chat)BHT-Bot help-command /
willkommensnachricht

BOT-82: Termin-Scraper, der automatisch Erinnerungen aus offentlichen Quellen bezieht

Es gibt Termine, an die wollen alle Studierenden typischerweise erinnert werden, als auch Termine,
von denen die Universitat mdchte, dass die Studierende sich daran erinnern. Typische Beispiele
hierfir sind Rickmeldefristen und (Beuth-eigene) Feiertage.

Durch einen Webscraper sollen solche Termine aus (6ffentlichen) Quellen automatisch bezogen und
dann an alle Studierenden ausgespielt werden.

Auch wenn dieses Feature fur die meisten Studierenden interesssant sein dirfte, muss es eine
Mdglichkeit zum Opt-Out geben. Ggf. ist sogar angezeigt, dass ein Opt-In erfolgt, was allerdings den
Nutzen des Features, vor allem aus Universitatssicht, mindern wurde.

Initiale Schatzung

Technologien

Abhangigkeiten

* Javascript
* Docker
* HTML-DOM

*BOT-55

Seite 6 /11

geplanter-stand-features

Anforderungen * Relevante Termine werden regelmaliig, automatisch bezogen
und als Erinnerung gespeichert
* User kdnnen “globale Erinnerungen” aktivieren oder deaktivieren
* Das Feature ist resistent gegen Anderungen an den Domains
oder deren Struktur - Fallen gescrapete Dienste langer aus wird
dies reported
* Das Feature wird als nicht-eigenstandig in den Reminder Service
integriert
* Das Feature ist bzgl. Opt-in oder Opt-out in den Hilfe-
Texten/BegrifBungsnachrichten des BHT-Bot dokumentiert

Tasks * BOT-83 Prufen ob Opt-In (ndtig ist) oder Opt-Out (mdglich ist)
* BOT-84 Quellen mit relevanten Terminen zusammentragen - auf
Scrapebarkeit achten
* BOT-85 Scraping (mittels Scapring-Service) implementieren
* BOT-86 Termine aus Scraping in Erinnerungs Datenbank
uberfihren
* BOT-87 Rasa Direktive Opt-In oder Opt-Out implementieren
* BOT-88 Error-Reporting implementieren, bei Misslungenen
Scraping (Uber gewisse Zeit hinweg)

* BOT-114 Opt-In oder Opt-Out in Hilfe-Texten /
Willkommensnachricht dokumentieren

BOT-89: Moodle iCal import als Erinnerungen

Moodle ist die zentrale Online-Lernplattform der Beuth Hochschule. Kurse, die in Moodle verwaltet
werden erhalten in der Regel Abgabetermine fir Aufgaben, die wahrend des Semesters fallig
werden. Oftmals stehen diese Abgabetermine bereits zu Beginn des Semesters in Moodle fest und
kénnen dort in einer Kalenderansicht betrachtet werden.

Moodle bietet auBerdem eine Funktion zum Export der Eintragungen im eigenen Kalender:
https://Ims.beuth-hochschule.de/calendar/export.php

Der User kann hier einen Link erzeugen, Uber den eine iCal Datei bezogen werden kann. Diese Datei
enthalt die Semestertermine und kann entsprechend in Erinnerungen des Bots umgewandelt
werden

Initiale Schatzung 1
Technologien * Javascript
*iCal
* Rasa
Abhangigkeiten * BOT-55
Anforderungen * Der User kann dem Bot seinen Moodle-Kalender-Export-Link

senden um einen Import auszulésen

* Die iCal Datei hinter dem Export-Link wird in Erinnerungs-
Eintrage des Erinnerungs-Service umgewandelt

* Erinnerungen an Abgabetermine erfolgen zu Beginn des
Tages / zeitlich versetzt vor der Falligkeit der Abgabe, nicht
zum im Kalender angegebenen Zeitpunkt

* Das Moodle-Import Feature wird nicht-eigenstandig in den
Reminder-Service integriert

* Das Feature (und seine Nutzung) ist in der BHT-Bot Hilfe
gelistet

Seite 7 /11 https://ds-maximum.de

https://lms.beuth-hochschule.de/calendar/export.php

geplanter-stand-features

Tasks * BOT-90 Import Moodle Rasa Direktive
* BOT-91 Moodle iCal Download via zentralem Scaper Service
* BOT-92 iCal Parsing und Persistierung als (sinnvolle)
Erinnerung
* BOT-111 Feature Release
* BOT-113 Hilfe-Texte in (Chat)BHT-Bot help-command /
willkommensnachricht

BOT-13: Komponente zur Umwandlung von Sprache zu Text (STT)

Es soll ermdglicht werden, dass Benutzern neben Textnachrichten auch mittels Sprachnachrichten
mit dem BeuthBot kommunizieren kdnnen. Dabei sollen die Sprachnachrichten mittels eines neuen
Services in Text Ubersetzt werden und dann wie andere Textnachrichten verarbeitet werden. Hierzui
sollen 3 bekannte STT-Frameworks (Kaldi, Mozilla Voice STT und Wav2Letter) getestet und
vergleichen werden. Basierend darauf soll eine Entscheidung getroffen werden, welches Framework
schlussendlich in der Production-Environment verwendet werden soll. Das Framework wird dann in
Form eines neuen Micro-Services in den BeuthBot integriert.

Zustandigkeit Robert Halwaly
Initiale Schatzung 3 Tage
Programmiersprachen * Python (Mozilla Voice STT)

* C++ (Kaldi, WAV2Letter)

Frameworks/Libraries * Kaldi
* Mozilla Voice STT
* WAV2Letter
Services * Speech
Abhangigkeiten * BOT-43: Erstellung eines Common-Frameworks fur

(Content-)Services

Anforderungen * Die Ubersetzung soll mittels neuronaler Netzte
geschehen
* Nur Sprachnachrichten auf Deutsch sollen
Ubersetzt werden
* Das verwendete Framework muss OpenSource sein
und Lokal auf dem BeuthBot-Server ausfuhrbar sein
* Es soll keine Model-Adapation durchgefuhrt werden

Tasks
BOT-23: Komponente zur Umwandlung von Text zu Sprache (TTS)

Neben der bereits vorhandenen Funktion Textnachrichten vom Beuthbot zu erhalten, sollen Nutzer
die Moglichkeit bekommen ebenfalls Sprachnachrichten zu empfangen. Hierfur wird eine
Komponente zur Konvertierung von Text in Sprache (Eng: , Text-To-Speech (TTS)) bendtigt. Dieses
Feature soll dem Nutzer in kunftigen, dem Beuthbot hinzugefugten, Messenger-Diensten zur
Verfugung stehen. Zur Umsetzung soll optimalerweise von einer Library Gebrauch gemacht werden,
welche den Anforderungen gerecht wird.

Initiale Schatzung 1

Technologien Javascript

Seite 8 /11

geplanter-stand-features

Abhangigkeiten keine

Anforderungen *Support fur die deutsche Sprache
*Sprachnachrichten lassen sich als MP3- und WAV-Dateien
exportieren
*Das Feature ist bzgl. Opt-in oder Opt-out in den Hilfe-
Texten/BegruBungsnachrichten des Beuthbots dokumentiert

Nice to Haves Sprachgeschwindigkeit und Stimme des Sprechers sind
konfigurierbar
Tasks * BOT-24 Recherche nach geeignetem Tool (TTS)

* BOT-25 Eigene Implementierung (TTS)
* BOT-98 Integration in Beuthbot

BOT-75: BegruBungsnachricht

Neue Benutzer des BeuthBots sollen mit einer BegriSungsnachricht empfangen werden. Diese
Nachricht soll die Features des BeuthBots vorstellen und einen Shortcut nennen, welchen die
Benutzer verwenden kénnen, wenn sie Hilfe benétigen. Mit dem Shortcut listet der BeuthBot
nochmals all seine Features auf.

Initiale Schatzung 1

Technologien * JavaScript

Abhangigkeiten Keine

Anforderungen * Die BegruBungsnachricht erscheint nur flr neue Benutzer

* Das System sollte einen Shortcut zur Wiedervorstellung
der Features bereitstellen, falls Benutzer Hilfe brauchen
* Das System muss in der Lage sein, auf die Hilfeanfrage.
des Benutzers mit Hilfe des Shortcuts innerhalb von 1,5
Sekunden zu antworten

* Das System sollte gut dokumentiert sein

* Das System sollte leicht zu verstehen sein

Tasks * BOT-93 Client
* BOT-94 Server
* BOT-132 Server fragt alle anderen Server was sie konnen/
machen und gibt das dann aus

BOT-74: Webseite

Um eine komplette Ubersicht fir alle genutzten BeuthBot-Resourcen zu haben, soll eine Webseite
zur Prasentation dieser Ressourcen erstellt werden. Zu den Ressourcen zahlen das Ziemer's Wiki,
Telegram, Discord, Github und die Implementation des Chatbots.

Initiale Schatzung 3

Technologien * TypeScript
* JavaScript

Frameworks/ Libraries * Angular
* Bootstrap

Seite 9/11 https://ds-maximum.de

geplanter-stand-features

Abhangigkeiten *BOT-10
*BOT-30
Anforderungen * Jeder Ressource wird ein Abschnitt gewidmet, welcher

Infos & einen Link zu der jeweiligen Ressource enthalt
* Anschauliches, Einheitliches und responsive Design
der Webseite

* leicht austauschbare Komponenten

* Das System sollte eine Ansicht innerhalb von 3
Sekunden laden

* Das System sollte gut dokumentiert sein

* Das System sollte leicht zu verstehen sein

Tasks * BOT-76 Webseite Einrichten
* BOT-77 Infos zum Wiki
* BOT-78 Infos zu Telegram
* BOT-79 Infos zu Discord
* BOT-80 Infos zu GitHub
* BOT-81 Implementation Chatbot
* BOT-130 Notifications wenn Nachricht vom Chatbot
* BOT-131 Responsive

BOT-11: Universeller Scraper & Download

Der Beuthbot soll einen ,universellen” Web-Scraper beinhalten, der als Grundlage fur kinftige
Features dienen soll, die fur konkrete Scraping-Funktionalitaten vorgesehen sind. Aufgrund der
hohen Diversitat an Datenstrukturen unterschiedlicher Webseiten, soll dieser moglichst abstrakte
Funktionalitaten zur Extrahierung von Datensatzen bieten.

Initiale Schatzung 1

Technologien Javascript

Abhangigkeiten keine

Anforderungen *Import von HTML- und XML-Dateien

*Daten lassen sich im JSON-Format exportieren
*Datensatze sind per HTML-Tags und CSS-Selektoren
extrahierbar

*Dateien einer Webseite lassen sich downloaden

Tasks * BOT-26 Recherche nach geeignetster Methode
(HTML-JSON)

BOT-15: Personalliste der Beuht-Hochschule im Beuthbot abrufbar machen

Seite 10 /11

geplanter-stand-features

Dem Bot wird eines neues Feature hinzugefugt. Dieses Feature soll dem Benutzer des BeuthBots ein
Abfrage von Informationen Uber das Personal der Beuth Hochschule(BHT) ermdéglichen

Ablauf:

Der Benutzer teilt dem Bot Uber einen Befehl mit (“Wer ist Max Mustermann?”, “Welche Person hat
die E-Mail mail@mail.com?”, “Welche Personen sitzen in Raum B001?”) , dass er Informationen Uber
eine oder mehrere Personen erhalten mdchte. Der Bot pruft dann die mitgegebenen Informationen
und gibt dann aus:

* Wenn er passende Daten in der Datenbank findet:

- Auflistung der angefragen Daten

* Wenn er keine passenden Daten finden kann:

- Meldung, das die Suche erfolglos war

Weitere Informationen:

Die Informationen Uber das Personal werden in einer Tabelle in der Datenbank gespeichert und von
dort abgerufen. Diese Informationen kdnnen jederzeit aktuallisiert werden.

Spatere Erweiterungsmoglichkeiten:

Zunachst werden nur Entwickler Zugriff auf das Bearbeiten der Daten besitzen, flr eine spatere
Ausbaustufe ist aber eine Verwaltung der Daten mittels dafur berechtigter User vorstellbar.

Die Einbindung der Personaldaten kann Uber einen Scrapper auf der Seite der Personalliste auch
persepektivisch komplett automatisiert werden.

Die Daten in der Datenbank kdnnen mit neuen Informationen erweitert werden. (Personliches,
Sprechzeiten, etc.)

Initiale Schatzung 3

Technologien * Javascript
Abhangigkeiten keine
Anforderungen * <Anforderung 1>

* <Anforderung 2>

Tasks * BOT-17 - initiales Auslesen der Personalliste
* BOT-18 - Abrufen der Information aus der
Personalliste
* BOT-19 - Erkennung der Benutzeranfrage zur
Personensuche
* BOT-96 - Bearbeiten der Daten der Personalliste
* BOT-125 - Erstellen einer neuen Tabelle
»Personalliste” in der Datenbank

Nutzungshinweis: Auf dieses vorliegende Schulungs- oder Beratungsdokument (ggf.) erlangt der
Mandant vertragsgemald ein nicht ausschlielliches, dauerhaftes, unbeschranktes, unwiderrufliches
und nicht Ubertragbares Nutzungsrecht. Eine hieruber hinausgehende, nicht zuvor durch
datenschutz-maximum bewilligte Nutzung ist verboten und wird urheberrechtlich verfolgt.

Seite 11/ 11 https://ds-maximum.de

