
 datenschutz-maximum Version 17.11.2020 14:58, Seite 1 / 7

https://wiki.ziemers.de/wiki/software/beuthbot/berichte/ws2020/alt/dennis?rev=1605621520 Gedruckt 01.02.2026 10:51

BOT-30: Chatbot Library: Vereinheitlichung der Kommunikation von Javascript Chatbots mit dem
Gateway

Problem: Derzeit muss jede Anwendung, die den BHT-Bot als Chatbot implementieren möchte selbst
implementieren, wie die Kommunikation zwischen Anwendung und Gateway aussieht, als auch die
Schnittstellen Parameter in Anfrage und Antwort.
Um diese Implementationsredundanz zu verhindern, wird die Kommunikation und Typedefinitionen
in einer zentralen Javascript Bibliothek zusammengefasst.
Dies ermöglicht auch weitere geplante Funktionalitäten (wie der asymmetrische
Kommnuikationskanal zur Requestunabhängigen Server → Client Kommunikation) zentral
entwickelt und mittels Dependency Management schnell in die ChatClients überführt werden.

Initiale Schätzung 1

Technologien * Javascript
* Typescript

Abhängigkeiten keine

Anforderungen * Die Library lässt sich in Node und Browser Javascript einbinden * Die Library
nutzt semantische Versionierung zur Ermöglichung von Non-Breaking-Updates *
Die fertige Library lässt sich via Dependency-Management (npm/yarn/webpack)
userseitig einbinden und updaten * Die Library enthält typisierte (typescript)
Entitäten für Common Request und Response Format(e) * Die Library enthält
Unit-Tests für essentielle Funktionen und Typen * Die Library ist dokumentiert,
sowohl was Nutzung, als auch Contribution angeht * Die Library verbessert die
Collaboration mittels Linting-Regeln und Workflow-Scripten

Tasks * BOT-33 Library Usage Dokumentieren
* BOT-34 Library in Discord Bot integrieren
* BOT-35 Library in Telegram Bot integrieren
* BOT-36 Library in Website integrieren
* BOT-31 Common Funktionalität / Use Cases identifizieren
* BOT-32 Typescript Library für Bot erstellen

BOT-37: Discord Integration des BHT-Bot

Discord ist eine weit verbreitete Kommunikatinsplattform, auf der Nutzer sich in „Servern“
vernetzen und dort meist thematisch organisiert kommunizieren können. Die Projektgruppe des
WS2020 ist selbst Teil der Zielgruppe des Discord-Messengers, wodurch sich diesese Plattform
besonders eignet um einen weiteren Chatservice (neben Telegram) an den BHT-Bot anzubinden.
Eine Implementation des Chatbots innerhalb der Discord-Struktur steigert somit zum Einen die
Verbreitung(smöglichkeit) des BHT-Bot und bietet gleichzeitig eine gute Möglichkeit Debug-Bot-
Instanzen im präferierten Messenger zu betreiben.

Initiale Schätzung 2

Technologien * Javascript
* Docker

Abhängigkeiten * BOT-30

Pflichtenheft Features

Seite 2 / 7

Anforderungen * Der Discourse Bot benutzt die zu entwickelnde zentralisierte Library
zur Gateway Kommunikation um Coderedundanz mit dem Telegram
Bot zu verhindern
* Der Discourse Bot kann (direkte) Nutzer-Nachrichten mittels
Gateway verarbeiten und antwortet dem User entsprechend
* Wenn keine Verbindung mit dem Gateway besteht oder Fehler bei
Anfragen auftreten reagiert der Chatbot durch Präsentation einer
hilfreichen Fehlermeldung
* Der Discourse Bot wird äquivalent zum Telgram Bot in das BHT-Bot
Universum mittels Docker + compose integriert
* Der Discourse Bot ist nicht Teil des BHT Bot, er wird als paralleler,
unabhängiger Service betrieben
* Alle Credentials und Urls/Ports werden aus dem Environment
bezogen, es gibt keine hard-coded Referenzen zu Strukturen des
BHT-Bot Gateways

Tasks * BOT-38 NodeJS Chatbot erstellen
* BOT-39 Docker Container + Compose für Container erstellen
* BOT-40 Bot Usage dokumentieren
* BOT-41 Bot Account anlegen für release
(https://discord.com/developers/applications)
* BOT-42 Bot Container in Beuth-Docker-Netzwerk einbinden
(release)

BOT-43: Erstellung eines Common-Frameworks für (Content-)Services

Services im BHT-Bot kommunizieren alle über REST-Schnittstellen. Diese sind alle als Express-
Anwendung mit JSON-Kommunikation implementiert, was für viel Code-Redundanz führt.
Gleichzeitig benutzt kein Service strukturierte Darstellungen der Schnittstellen, wie Anfragen und
Antworten zum Gateway, User Daten oder Rasa-Intents.
Ein spezieller, repititiver, Unterfall der Microservices sind solche, die Content bereitstellen. Diese
erhalten alle Nachrichten vom Gateway und senden ihre antworten auch dort wieder zurück.
Request- und Response sind durch das Gateway definiert, die resultierende Struktur ist
entsprechend für alle Contentservices prinzipiell Identisch.
Zur Vermeidung von Code-Redundanzen und Erleichterung des „Kick-Off“ eines neuen Content-
Services sollen die Common Funktionen und Entitäten in ein Framework gegossen werden

Initiale Schätzung 1

Technologien * Javascript
* Typescript
* Dockerfile

Abhängigkeiten * BOT-37

https://discord.com/developers/applications

Pflichtenheft Features

Seite 3 / 7 https://ds-maximum.de

Anforderungen * Das Framework implementiert eine NodeJS Express REST-
API, äquivalent zu den existierenden Content-Services
* Das Framework lässt sich in NodeJS Anwendungen via
Dependency-Management einbinden (npm/yarn)
* Das Framework abstrahiert den (Express) Server und dessen
Routing, so dass ein Contentservices nur noch die Response
implementieren muss
* Das Framework implementiert die Schnittstelle zum
Datenbankservice um a) Userdaten zu speichern/abzurufen
und b) eigene Daten zu speicher und abzurufen
* Das Framework füllt die “debug-history” der Requests so,
dass ein Service dieses Feature zwangsweise implementiert /
nutzt
* Requests, Responses, User, Rasa-Intents und ggf. weitere
Entitäten werden durch das Framework als typisierte
(typescript) Objekte definiert
* Das Framework wird in allen bestehenden und geplanten
Content-Services implementiert: Wetter, Mensa, Reminder
* Die Nutzung des Frameworks ist verständlich dokumentiert
* Die Contribution wird mittels Linting, Dokumentation und
Build-Scripts erleichtert
* Das Framework nutzt types aus der (noch zu entwickelnde)
BHT-Bot Library um Redundanzen zwischen Client-Bibliothem
und Service-Framwork zu vermeiden

Tasks * BOT-44 Common Code, Features, Entitäten identifizieren →
Use Case ableiten
* BOT-45 Typisiertes Javascript Framework erstellen
* BOT-46 Framework einbinden in Weather Service
* BOT-47 Framework einbinden in Mensa Service
* BOT-48 Framework einbinden in Reminder Service
* BOT-108 Framework dokumentieren
* BOT-117 Request History implementieren - Nutzung
enforcen

BOT-49: User-Messenger-Service: Nachricht proaktiv, requestunabhängig an Clients senden

Der BHT-Bot kann bisher nur passiv auf Anfragen warten und diese dann beantworten. Zur
Implementierung von asymmetrischer bzw. request-unabhängiger Kommunikation benötigt der Bot
einen neuen Service, der als Schnittstelle für diese Art von Kommunikation dient.

Initiale Schätzung 2.5

Technologien * Javascript
* Websockets
* Docker

Abhängigkeiten * BOT-30

Pflichtenheft Features

Seite 4 / 7

Anforderungen * Der User-Messenger-Service kann eine Nachricht an einen User (via Client-
Unabhängiger User-ID) senden
* Wenn ein User mehrere Clients benutzt, wird die Nachricht an alle Clients
gesendet
* Wenn ein User (über längere Zeit) nicht erreichbar ist wird die Kennung entfernt
* Wenn eine Nachricht nicht an einen User gesendet werden kann bekommt der
auslösende Service diese Information unterscheidbar zwischen a) Der Nutzer ist
gerade nicht erreichbar b) Der Nutzer ist dauerhaft nicht erreichbar (gelöscht) c)
Der Dienst ist generell unhealthy
* Der Service wird als Docker Image via docker-compose in die BHT-Bot
Infrastruktur integirert. Er ist Teil des BHT-Bot Repositories
* Die Funktionalität des Services wird auf Clientseite in die Common-Chatbot-
Library (BOT-30)
* Alle bestehenden ChatBot-Services werden an den Messenger Service
angebunden (Telegram, Discord)

Tasks * BOT-50 Websocket Registry für ChatBotClients
* BOT-51 REST-Service für Nachrichtenversand
* BOT-52 Implementation der Websocket-Registrierung in Common-Library für
Chatbots
* BOT-53 Implementierung der Common-Library-Websocket-Registrierung in
TelegramBot
* BOT-54 Implementierung der Common-Library-Websocket-Registrierung in
DiscordBot
* BOT-56 Dokumentation Usage Service
* BOT-110 Deployment / Release

BOT-55: Erinnerungs-Service: Behandelt „erinnere mich“ Befehle und erinnert bei Fälligkeit autonom

Erinnerungen schedulen zu können ist ein typischer, weil praktischer, Anwendungsfall in beliebten
(Business) Kommunikations-Services wie Slack oder Mattermost. In beiden Fällen wird diese
Funktionalität durch die hauseigenen Reminder-Bots zur Verfügung gestellt.
Um die Featuredichte des BHT-Bot zu erhöhen wird ein Reminder-Service erstellt, durch den
identische Funktionalität wie bei genannten Diensten zur Verfügung stellt. Durch die Multi-
Messenger-Fähigkeit des BHT-Bot wird dieses Feature somit auch für User angeboten, deren
Kommunikations-Plattform keinen eigenen Reminder-Bot anbietet.
BeispielAnfragen:
* Erinnere mich am 22.10. an die Klausur in Mathe
* Erinnere mich jeden Donnerstag um 18 Uhr an den Ballettkurs
* Erinnere mich jedes Jahr am 01.01 an den Geburtstag meiner Mutter.
* Erinnere mich in 10 Tagen das Probeabonnement zu kündigen
* <Erinnere> <Zeitpunkt/Zeitspanne/Interval> <Thema>

Initiale Schätzung 3

Technologien * Javascript
* Docker
* Rasa
* MongoDB
* Cronjob

Abhängigkeiten * BOT-43
* BOT-30
* BOT-12
* BOT-49

Pflichtenheft Features

Seite 5 / 7 https://ds-maximum.de

Anforderungen * Erfolgreiche „erinnere“-Anfragen werden vom Dienst durch
Bestätigung der erkannten und persistierten Daten
beantwortetoder
* Fehlerhafte “erinnere”-Anfragen werden durch ein Mini-
Usage-Tutorial beantwortet, damit der User seine Anfrage
korrigieren kann
* Erinnerungen werden auf user-ebene (clientunabhängig)
gespeichert, so dass ein User die gleichen Erinnerungen in
allen genutzten Clients zur Verfügung hat
* Erinnerungen werden bei Fälligkeit einmalig (an alle clients
des users) ausgespielt
* Wiederkehrende Erinnerungen werden ausgespielt und
anschließend an Hand des Intervals neu terminiert
* Der Nutzer kann Erinnerungen löschen
* Der Nutzer kann seine Erinnerungen anzeigen lassen
* Der Service wird als Docker Container via docker-compose
verwaltet und in das BHT-Repository integriert
* Der Service nutzt das (noch zu schaffende) Content-Service-
Framework
* Wenn der Reminder-Service nach einem Ausfall wieder aktiv
wird erinnert er nicht (einzeln) an alle Termine, die
zwischenzeitig fällig waren
* Der Serive ist in Hilfe-Texten des (Chat) BHT-Bots integriert

Tasks * BOT-57 Rasa Anbindung „Erinnere“-Direktive
* BOT-58 Service Endpoint speichert Reminder und Antwortet
auf Probleme
* BOT-59 Scheduler/Cronjob prüft und sendet regelmäßig
fällige Erinnerungen
* BOT-60 Dokumentation Service Usage
* BOT-109 Deployment / Release
* BOT-112 Hilfe-Texte in (Chat)BHT-Bot help-command /
willkommensnachricht

BOT-82: Termin-Scraper, der automatisch Erinnerungen aus öffentlichen Quellen bezieht

Es gibt Termine, an die wollen alle Studierenden typischerweise erinnert werden, als auch Termine,
von denen die Universität möchte, dass die Studierende sich daran erinnern. Typische Beispiele
hierfür sind Rückmeldefristen und (Beuth-eigene) Feiertage.
Durch einen Webscraper sollen solche Termine aus (öffentlichen) Quellen automatisch bezogen und
dann an alle Studierenden ausgespielt werden.
Auch wenn dieses Feature für die meisten Studierenden interesssant sein dürfte, muss es eine
Möglichkeit zum Opt-Out geben. Ggf. ist sogar angezeigt, dass ein Opt-In erfolgt, was allerdings den
Nutzen des Features, vor allem aus Universitätssicht, mindern würde.

Initiale Schätzung 1

Technologien * Javascript
* Docker
* HTML-DOM

Abhängigkeiten * BOT-55

Pflichtenheft Features

Seite 6 / 7

Anforderungen * Relevante Termine werden regelmäßig, automatisch bezogen
und als Erinnerung gespeichert
* User können “globale Erinnerungen” aktivieren oder deaktivieren
* Das Feature ist resistent gegen Änderungen an den Domains
oder deren Struktur → Fallen gescrapete Dienste länger aus wird
dies reported
* Das Feature wird als nicht-eigenständig in den Reminder Service
integriert
* Das Feature ist bzgl. Opt-in oder Opt-out in den Hilfe-
Texten/Begrüßungsnachrichten des BHT-Bot dokumentiert

Tasks * BOT-83 Prüfen ob Opt-In (nötig ist) oder Opt-Out (möglich ist)
* BOT-84 Quellen mit relevanten Terminen zusammentragen - auf
Scrapebarkeit achten
* BOT-85 Scraping (mittels Scapring-Service) implementieren
* BOT-86 Termine aus Scraping in Erinnerungs Datenbank
überführen
* BOT-87 Rasa Direktive Opt-In oder Opt-Out implementieren
* BOT-88 Error-Reporting implementieren, bei Misslungenen
Scraping (über gewisse Zeit hinweg)
* BOT-114 Opt-In oder Opt-Out in Hilfe-Texten /
Willkommensnachricht dokumentieren

BOT-89: Moodle iCal import als Erinnerungen

Moodle ist die zentrale Online-Lernplattform der Beuth Hochschule. Kurse, die in Moodle verwaltet
werden erhalten in der Regel Abgabetermine für Aufgaben, die während des Semesters fällig
werden. Oftmals stehen diese Abgabetermine bereits zu Beginn des Semesters in Moodle fest und
können dort in einer Kalenderansicht betrachtet werden.
Moodle bietet außerdem eine Funktion zum Export der Eintragungen im eigenen Kalender:
https://lms.beuth-hochschule.de/calendar/export.php
Der User kann hier einen Link erzeugen, über den eine iCal Datei bezogen werden kann. Diese Datei
enthält die Semestertermine und kann entsprechend in Erinnerungen des Bots umgewandelt
werden

Initiale Schätzung 1

Technologien * Javascript
* iCal
* Rasa

Abhängigkeiten * BOT-55

Anforderungen * Der User kann dem Bot seinen Moodle-Kalender-Export-Link
senden um einen Import auszulösen
* Die iCal Datei hinter dem Export-Link wird in Erinnerungs-
Einträge des Erinnerungs-Service umgewandelt
* Erinnerungen an Abgabetermine erfolgen zu Beginn des
Tages / zeitlich versetzt vor der Fälligkeit der Abgabe, nicht
zum im Kalender angegebenen Zeitpunkt
* Das Moodle-Import Feature wird nicht-eigenständig in den
Reminder-Service integriert
* Das Feature (und seine Nutzung) ist in der BHT-Bot Hilfe
gelistet

https://lms.beuth-hochschule.de/calendar/export.php

Pflichtenheft Features

Seite 7 / 7 https://ds-maximum.de

Tasks * BOT-90 Import Moodle Rasa Direktive
* BOT-91 Moodle iCal Download via zentralem Scaper Service
* BOT-92 iCal Parsing und Persistierung als (sinnvolle)
Erinnerung
* BOT-111 Feature Release
* BOT-113 Hilfe-Texte in (Chat)BHT-Bot help-command /
willkommensnachricht

BOT-XXX: EPIC_TITLE

EPIC_DESCRIPTION

Initiale Schätzung TIME

Technologien * <Programmiersprache 1>
* <Containerisierung 1>
* <Bot Servie 1>

Abhängigkeiten * <Ticket ID1>
* <Ticket ID2>

Anforderungen * <Anforderung 1>
* <Anforderung 2>

Tasks * <Task1>
* <Task2>

Nutzungshinweis: Auf dieses vorliegende Schulungs- oder Beratungsdokument (ggf.) erlangt der
Mandant vertragsgemäß ein nicht ausschließliches, dauerhaftes, unbeschränktes, unwiderrufliches
und nicht übertragbares Nutzungsrecht. Eine hierüber hinausgehende, nicht zuvor durch
datenschutz-maximum bewilligte Nutzung ist verboten und wird urheberrechtlich verfolgt.

