
 datenschutz-maximum Version 17.11.2020 14:33, Seite 1 / 6

https://wiki.ziemers.de/wiki/software/beuthbot/berichte/ws2020/alt/dennis?rev=1605619987 Gedruckt 01.02.2026 10:50

BOT-30: Chatbot Library: Vereinheitlichung der Kommunikation von Javascript Chatbots mit dem
Gateway

Problem: Derzeit muss jede Anwendung, die den BHT-Bot als Chatbot implementieren möchte selbst
implementieren, wie die Kommunikation zwischen Anwendung und Gateway aussieht, als auch die
Schnittstellen Parameter in Anfrage und Antwort.
Um diese Implementationsredundanz zu verhindern, wird die Kommunikation und Typedefinitionen
in einer zentralen Javascript Bibliothek zusammengefasst.
Dies ermöglicht auch weitere geplante Funktionalitäten (wie der asymmetrische
Kommnuikationskanal zur Requestunabhängigen Server → Client Kommunikation ) zentral
entwickelt und mittels Dependency Management schnell in die ChatClients überführt werden.

Initiale Schätzung 1

Technologien * Javascript
* Typescript

Abhängigkeiten keine

Anforderungen * Die Library lässt sich in Node und Browser Javascript
einbinden
* Die Library nutzt semantische Versionierung zur
Ermöglichung von Non-Breaking-Updates
* Die fertige Library lässt sich via Dependency-Management
(npm/yarn/webpack) userseitig einbinden und updaten
* Die Library enthält typisierte (typescript) Entitäten für
Common Request und Response Format(e)
* Die Library enthält Unit-Tests für essentielle Funktionen
und Typen
* Die Library ist dokumentiert, sowohl was Nutzung, als auch
Contribution angeht
* Die Library verbessert die Collaboration mittels Linting-
Regeln und Workflow-Scripten

Tasks * BOT-33 Library Usage Dokumentieren
* BOT-34 Library in Discord Bot integrieren
* BOT-35 Library in Telegram Bot integrieren
* BOT-36 Library in Website integrieren
* BOT-31 Common Funktionalität / Use Cases identifizieren
* BOT-32 Typescript Library für Bot erstellen

BOT-37: Discord Integration des BHT-Bot

Discord ist eine weit verbreitete Kommunikatinsplattform, auf der Nutzer sich in „Servern“
vernetzen und dort meist thematisch organisiert kommunizieren können. Die Projektgruppe des
WS2020 ist selbst Teil der Zielgruppe des Discord-Messengers, wodurch sich diesese Plattform
besonders eignet um einen weiteren Chatservice (neben Telegram) an den BHT-Bot anzubinden.
Eine Implementation des Chatbots innerhalb der Discord-Struktur steigert somit zum Einen die
Verbreitung(smöglichkeit) des BHT-Bot und bietet gleichzeitig eine gute Möglichkeit Debug-Bot-
Instanzen im präferierten Messenger zu betreiben.

Initiale Schätzung 2

Technologien * Javascript
* Docker



Pflichtenheft Features

Seite 2 / 6

Abhängigkeiten * BOT-30

Anforderungen * Der Discourse Bot benutzt die zu entwickelnde zentralisierte Library
zur Gateway Kommunikation um Coderedundanz mit dem Telegram
Bot zu verhindern
* Der Discourse Bot kann (direkte) Nutzer-Nachrichten mittels
Gateway verarbeiten und antwortet dem User entsprechend
* Wenn keine Verbindung mit dem Gateway besteht oder Fehler bei
Anfragen auftreten reagiert der Chatbot durch Präsentation einer
hilfreichen Fehlermeldung
* Der Discourse Bot wird äquivalent zum Telgram Bot in das BHT-Bot
Universum mittels Docker + compose integriert
* Der Discourse Bot ist nicht Teil des BHT Bot, er wird als paralleler,
unabhängiger Service betrieben
* Alle Credentials und Urls/Ports werden aus dem Environment
bezogen, es gibt keine hard-coded Referenzen zu Strukturen des
BHT-Bot Gateways

Tasks * BOT-38 NodeJS Chatbot erstellen
* BOT-39 Docker Container + Compose für Container erstellen
* BOT-40 Bot Usage dokumentieren
* BOT-41 Bot Account anlegen für release
(https://discord.com/developers/applications)
* BOT-42 Bot Container in Beuth-Docker-Netzwerk einbinden
(release)

BOT-43: Erstellung eines Common-Frameworks für (Content-)Services

Services im BHT-Bot kommunizieren alle über REST-Schnittstellen. Diese sind alle als Express-
Anwendung mit JSON-Kommunikation implementiert, was für viel Code-Redundanz führt.
Gleichzeitig benutzt kein Service strukturierte Darstellungen der Schnittstellen, wie Anfragen und
Antworten zum Gateway, User Daten oder Rasa-Intents.
Ein spezieller, repititiver, Unterfall der Microservices sind solche, die Content bereitstellen. Diese
erhalten alle Nachrichten vom Gateway und senden ihre antworten auch dort wieder zurück.
Request- und Response sind durch das Gateway definiert, die resultierende Struktur ist
entsprechend für alle Contentservices prinzipiell Identisch.
Zur Vermeidung von Code-Redundanzen und Erleichterung des „Kick-Off“ eines neuen Content-
Services sollen die Common Funktionen und Entitäten in ein Framework gegossen werden

Initiale Schätzung 1

Technologien * Javascript
* Typescript
* Dockerfile

Abhängigkeiten * BOT-37

https://discord.com/developers/applications


Pflichtenheft Features

Seite 3 / 6 https://ds-maximum.de

Anforderungen * Das Framework implementiert eine NodeJS Express REST-
API, äquivalent zu den existierenden Content-Services
* Das Framework lässt sich in NodeJS Anwendungen via
Dependency-Management einbinden (npm/yarn)
* Das Framework abstrahiert den (Express) Server und dessen
Routing, so dass ein Contentservices nur noch die Response
implementieren muss
* Das Framework implementiert die Schnittstelle zum
Datenbankservice um a) Userdaten zu speichern/abzurufen
und b) eigene Daten zu speicher und abzurufen
* Das Framework füllt die “debug-history” der Requests so,
dass ein Service dieses Feature zwangsweise implementiert /
nutzt
* Requests, Responses, User, Rasa-Intents und ggf. weitere
Entitäten werden durch das Framework als typisierte
(typescript) Objekte definiert
* Das Framework wird in allen bestehenden und geplanten
Content-Services implementiert: Wetter, Mensa, Reminder
* Die Nutzung des Frameworks ist verständlich dokumentiert
* Die Contribution wird mittels Linting, Dokumentation und
Build-Scripts erleichtert
* Das Framework nutzt types aus der (noch zu entwickelnde)
BHT-Bot Library um Redundanzen zwischen Client-Bibliothem
und Service-Framwork zu vermeiden

Tasks * BOT-44 Common Code, Features, Entitäten identifizieren →
Use Case ableiten
* BOT-45 Typisiertes Javascript Framework erstellen
* BOT-46 Framework einbinden in Weather Service
* BOT-47 Framework einbinden in Mensa Service
* BOT-48 Framework einbinden in Reminder Service
* BOT-108 Framework dokumentieren
* BOT-117 Request History implementieren - Nutzung
enforcen

BOT-53: Erinnerungs-Service: Behandelt „erinnere mich“ Befehle und erinnert bei Fälligkeit autonom

Erinnerungen schedulen zu können ist ein typischer, weil praktischer, Anwendungsfall in beliebten
(Business) Kommunikations-Services wie Slack oder Mattermost. In beiden Fällen wird diese
Funktionalität durch die hauseigenen Reminder-Bots zur Verfügung gestellt.
Um die Featuredichte des BHT-Bot zu erhöhen wird ein Reminder-Service erstellt, durch den
identische Funktionalität wie bei genannten Diensten zur Verfügung stellt. Durch die Multi-
Messenger-Fähigkeit des BHT-Bot wird dieses Feature somit auch für User angeboten, deren
Kommunikations-Plattform keinen eigenen Reminder-Bot anbietet.
BeispielAnfragen:
* Erinnere mich am 22.10. an die Klausur in Mathe
* Erinnere mich jeden Donnerstag um 18 Uhr an den Ballettkurs
* Erinnere mich jedes Jahr am 01.01 an den Geburtstag meiner Mutter.
* Erinnere mich in 10 Tagen das Probeabonnement zu kündigen
* <Erinnere> <Zeitpunkt/Zeitspanne/Interval> <Thema>

Initiale Schätzung 3



Pflichtenheft Features

Seite 4 / 6

Technologien * Javascript
* Docker
* Rasa
* Cronjob

Abhängigkeiten * BOT-43
* BOT-30
* BOT-12
* BOT-49

Anforderungen * Erfolgreiche „erinnere“-Anfragen werden vom Dienst durch
Bestätigung der erkannten und persistierten Daten
beantwortetoder
* Fehlerhafte “erinnere”-Anfragen werden durch ein Mini-
Usage-Tutorial beantwortet, damit der User seine Anfrage
korrigieren kann
* Erinnerungen werden auf user-ebene (clientunabhängig)
gespeichert, so dass ein User die gleichen Erinnerungen in
allen genutzten Clients zur Verfügung hat
* Erinnerungen werden bei Fälligkeit einmalig (an alle clients
des users) ausgespielt
* Wiederkehrende Erinnerungen werden ausgespielt und
anschließend an Hand des Intervals neu terminiert
* Der Nutzer kann Erinnerungen löschen
* Der Nutzer kann seine Erinnerungen anzeigen lassen
* Der Service wird als Docker Container via docker-compose
verwaltet und in das BHT-Repository integriert
* Der Service nutzt das (noch zu schaffende) Content-Service-
Framework
* Wenn der Reminder-Service nach einem Ausfall wieder aktiv
wird erinnert er nicht (einzeln) an alle Termine, die
zwischenzeitig fällig waren
* Der Serive ist in Hilfe-Texten des (Chat) BHT-Bots integriert

Tasks * BOT-57 Rasa Anbindung „Erinnere“-Direktive
* BOT-58 Service Endpoint speichert Reminder und Antwortet
auf Probleme
* BOT-59 Scheduler/Cronjob prüft und sendet regelmäßig
fällige Erinnerungen
* BOT-60 Dokumentation Service Usage
* BOT-109 Deployment / Release
* BOT-112 Hilfe-Texte in (Chat)BHT-Bot help-command /
willkommensnachricht

BOT-XXX: EPIC_TITLE

EPIC_DESCRIPTION

Initiale Schätzung TIME

Technologien * <Programmiersprache 1>
* <Containerisierung 1>
* <Bot Servie 1>

Abhängigkeiten * <Ticket ID1>
* <Ticket ID2>



Pflichtenheft Features

Seite 5 / 6 https://ds-maximum.de

Anforderungen * <Anforderung 1>
* <Anforderung 2>

Tasks * <Task1>
* <Task2>

BOT-XXX: EPIC_TITLE

EPIC_DESCRIPTION

Initiale Schätzung TIME

Technologien * <Programmiersprache 1>
* <Containerisierung 1>
* <Bot Servie 1>

Abhängigkeiten * <Ticket ID1>
* <Ticket ID2>

Anforderungen * <Anforderung 1>
* <Anforderung 2>

Tasks * <Task1>
* <Task2>

BOT-XXX: EPIC_TITLE

EPIC_DESCRIPTION

Initiale Schätzung TIME

Technologien * <Programmiersprache 1>
* <Containerisierung 1>
* <Bot Servie 1>

Abhängigkeiten * <Ticket ID1>
* <Ticket ID2>

Anforderungen * <Anforderung 1>
* <Anforderung 2>

Tasks * <Task1>
* <Task2>

BOT-XXX: EPIC_TITLE

EPIC_DESCRIPTION

Initiale Schätzung TIME

Technologien * <Programmiersprache 1>
* <Containerisierung 1>
* <Bot Servie 1>

Abhängigkeiten * <Ticket ID1>
* <Ticket ID2>



Pflichtenheft Features

Seite 6 / 6

Anforderungen * <Anforderung 1>
* <Anforderung 2>

Tasks * <Task1>
* <Task2>

Nutzungshinweis: Auf dieses vorliegende Schulungs- oder Beratungsdokument (ggf.) erlangt der
Mandant vertragsgemäß ein nicht ausschließliches, dauerhaftes, unbeschränktes, unwiderrufliches
und  nicht  übertragbares  Nutzungsrecht.  Eine  hierüber  hinausgehende,  nicht  zuvor  durch
datenschutz-maximum  bewilligte  Nutzung  ist  verboten  und  wird  urheberrechtlich  verfolgt.


