E datenschutz-maximum Version 17.11.2020 13:51, Seite 1/5

BOT-30: Chatbot Library: Vereinheitlichung der Kommunikation von Javascript Chatbots mit dem
Gateway

Problem: Derzeit muss jede Anwendung, die den BHT-Bot als Chatbot implementieren mdchte selbst
implementieren, wie die Kommunikation zwischen Anwendung und Gateway aussieht, als auch die
Schnittstellen Parameter in Anfrage und Antwort.

Um diese Implementationsredundanz zu verhindern, wird die Kommunikation und Typedefinitionen
in einer zentralen Javascript Bibliothek zusammengefasst.

Dies ermdglicht auch weitere geplante Funktionalitaten (wie der asymmetrische
Kommnuikationskanal zur Requestunabhangigen Server - Client Kommunikation) zentral
entwickelt und mittels Dependency Management schnell in die ChatClients uberfuhrt werden.

Initiale Schatzung 1

Technologien * Javascript
* Typescript

Abhangigkeiten keine

Anforderungen * Die Library lasst sich in Node und Browser Javascript
einbinden

* Die Library nutzt semantische Versionierung zur
Ermdglichung von Non-Breaking-Updates

* Die fertige Library lasst sich via Dependency-Management
(npm/yarn/webpack) userseitig einbinden und updaten

* Die Library enthalt typisierte (typescript) Entitaten fur
Common Request und Response Format(e)

* Die Library enthalt Unit-Tests fur essentielle Funktionen
und Typen

* Die Library ist dokumentiert, sowohl was Nutzung, als auch
Contribution angeht

* Die Library verbessert die Collaboration mittels Linting-
Regeln und Workflow-Scripten

Tasks * BOT-33 Library Usage Dokumentieren
* BOT-34 Library in Discord Bot integrieren
* BOT-35 Library in Telegram Bot integrieren
* BOT-36 Library in Website integrieren
* BOT-31 Common Funktionalitat / Use Cases identifizieren
* BOT-32 Typescript Library flr Bot erstellen

BOT-37: Discord Integration des BHT-Bot

Discord ist eine weit verbreitete Kommunikatinsplattform, auf der Nutzer sich in ,Servern”
vernetzen und dort meist thematisch organisiert kommunizieren kénnen. Die Projektgruppe des
WS2020 ist selbst Teil der Zielgruppe des Discord-Messengers, wodurch sich diesese Plattform
besonders eignet um einen weiteren Chatservice (neben Telegram) an den BHT-Bot anzubinden.
Eine Implementation des Chatbots innerhalb der Discord-Struktur steigert somit zum Einen die
Verbreitung(smdoglichkeit) des BHT-Bot und bietet gleichzeitig eine gute Mdglichkeit Debug-Bot-
Instanzen im praferierten Messenger zu betreiben.

Initiale Schatzung 2
Technologien * Javascript
* Docker

https://wiki.ziemers.de/wiki/software/beuthbot/berichte/ws2020/alt/dennis?rev=1605617476 Gedruckt 01.02.2026 10:50

Pflichtenheft Features

Abhangigkeiten *BOT-30

Anforderungen * Der Discourse Bot benutzt die zu entwickelnde zentralisierte Library
zur Gateway Kommunikation um Coderedundanz mit dem Telegram
Bot zu verhindern
* Der Discourse Bot kann (direkte) Nutzer-Nachrichten mittels
Gateway verarbeiten und antwortet dem User entsprechend
* Wenn keine Verbindung mit dem Gateway besteht oder Fehler bei
Anfragen auftreten reagiert der Chatbot durch Prasentation einer
hilfreichen Fehlermeldung
* Der Discourse Bot wird aquivalent zum Telgram Bot in das BHT-Bot
Universum mittels Docker + compose integriert
* Der Discourse Bot ist nicht Teil des BHT Bot, er wird als paralleler,
unabhangiger Service betrieben
* Alle Credentials und Urls/Ports werden aus dem Environment
bezogen, es gibt keine hard-coded Referenzen zu Strukturen des
BHT-Bot Gateways

Tasks * BOT-38 Node)S Chatbot erstellen
* BOT-39 Docker Container + Compose fur Container erstellen
* BOT-40 Bot Usage dokumentieren
* BOT-41 Bot Account anlegen fur release
(https://discord.com/developers/applications)
* BOT-42 Bot Container in Beuth-Docker-Netzwerk einbinden
(release)

BOT-43: Erstellung eines Common-Frameworks flr (Content-)Services

Services im BHT-Bot kommunizieren alle Gber REST-Schnittstellen. Diese sind alle als Express-
Anwendung mit JSON-Kommunikation implementiert, was fur viel Code-Redundanz flhrt.
Gleichzeitig benutzt kein Service strukturierte Darstellungen der Schnittstellen, wie Anfragen und
Antworten zum Gateway, User Daten oder Rasa-Intents.

Ein spezieller, repititiver, Unterfall der Microservices sind solche, die Content bereitstellen. Diese
erhalten alle Nachrichten vom Gateway und senden ihre antworten auch dort wieder zurtck.
Request- und Response sind durch das Gateway definiert, die resultierende Struktur ist
entsprechend flr alle Contentservices prinzipiell Identisch.

Zur Vermeidung von Code-Redundanzen und Erleichterung des ,Kick-Off* eines neuen Content-
Services sollen die Common Funktionen und Entitaten in ein Framework gegossen werden

Initiale Schatzung 1

Technologien * Javascript
* Typescript
* Dockerfile

Abhangigkeiten *BOT-37

Seite 2/5

https://discord.com/developers/applications

Pflichtenheft Features

Anforderungen

Tasks

BOT-XXX: EPIC_TITLE
EPIC_DESCRIPTION

Initiale Schatzung TIME

* Das Framework implementiert eine NodeJS Express REST-
API, aquivalent zu den existierenden Content-Services

* Das Framework Iasst sich in Node)JS Anwendungen via
Dependency-Management einbinden (npm/yarn)

* Das Framework abstrahiert den (Express) Server und dessen
Routing, so dass ein Contentservices nur noch die Response
implementieren muss

* Das Framework implementiert die Schnittstelle zum
Datenbankservice um a) Userdaten zu speichern/abzurufen
und b) eigene Daten zu speicher und abzurufen

* Das Framework fillt die “debug-history” der Requests so,
dass ein Service dieses Feature zwangsweise implementiert /
nutzt

* Requests, Responses, User, Rasa-Intents und ggf. weitere
Entitaten werden durch das Framework als typisierte
(typescript) Objekte definiert

* Das Framework wird in allen bestehenden und geplanten
Content-Services implementiert: Wetter, Mensa, Reminder

* Die Nutzung des Frameworks ist verstandlich dokumentiert
* Die Contribution wird mittels Linting, Dokumentation und
Build-Scripts erleichtert

* Das Framework nutzt types aus der (noch zu entwickelnde)
BHT-Bot Library um Redundanzen zwischen Client-Bibliothem
und Service-Framwork zu vermeiden

* BOT-44 Common Code, Features, Entitaten identifizieren -
Use Case ableiten

* BOT-45 Typisiertes Javascript Framework erstellen

* BOT-46 Framework einbinden in Weather Service

* BOT-47 Framework einbinden in Mensa Service

* BOT-48 Framework einbinden in Reminder Service

* BOT-108 Framework dokumentieren

* BOT-117 Request History implementieren - Nutzung
enforcen

Technologien * <Programmiersprache 1>
* <Containerisierung 1>

* <Bot Servie 1>

Abhangigkeiten * <Ticket ID1>
* <Ticket ID2>

Anforderungen * <Anforderung 1>
* <Anforderung 2>

Tasks * <Taskl>
* <Task2>

BOT-XXX: EPIC_TITLE

Seite 3/5

https://ds-maximum.de

Pflichtenheft Features

EPIC_DESCRIPTION

Initiale Schatzung TIME

Technologien

Abhangigkeiten

Anforderungen

Tasks

* <Programmiersprache 1>
* <Containerisierung 1>
* <Bot Servie 1>

* <Ticket ID1>
* <Ticket ID2>

* <Anforderung 1>
* <Anforderung 2>

* <Taskl>
* <Task2>

BOT-XXX: EPIC_TITLE

EPIC_DESCRIPTION

Initiale Schatzung TIME

Technologien

Abhangigkeiten

Anforderungen

Tasks

* <Programmiersprache 1>
* <Containerisierung 1>
* <Bot Servie 1>

* <Ticket ID1>
* <Ticket ID2>

* <Anforderung 1>
* <Anforderung 2>

* <Taskl>
* <Task2>

BOT-XXX: EPIC_TITLE

EPIC_DESCRIPTION

Initiale Schatzung TIME

Technologien

Abhangigkeiten

Anforderungen

Tasks

* <Programmiersprache 1>
* <Containerisierung 1>
* <Bot Servie 1>

* <Ticket ID1>
* <Ticket ID2>

* <Anforderung 1>
* <Anforderung 2>

* <Taskl>
* <Task2>

Seite 4 /5

Pflichtenheft Features

Nutzungshinweis: Auf dieses vorliegende Schulungs- oder Beratungsdokument (ggf.) erlangt der
Mandant vertragsgemal ein nicht ausschlielRliches, dauerhaftes, unbeschranktes, unwiderrufliches
und nicht Ubertragbares Nutzungsrecht. Eine hieriber hinausgehende, nicht zuvor durch
datenschutz-maximum bewilligte Nutzung ist verboten und wird urheberrechtlich verfolgt.

Seite 5/5 https://ds-maximum.de

