ﬁ datenschutz-maximum Version 22.11.2020 16:52, Seite 1/ 8
Pflichtenheft Features

BOT-30: Chatbot Library: Vereinheitlichung der Kommunikation von Javascript Chatbots mit dem
Gateway

Problem: Derzeit muss jede Anwendung, die den BHT-Bot als Chatbot implementieren mdchte selbst
implementieren, wie die Kommunikation zwischen Anwendung und Gateway aussieht, als auch die
Schnittstellen Parameter in Anfrage und Antwort.

Um diese Implementationsredundanz zu verhindern, wird die Kommunikation und Typedefinitionen
in einer zentralen Javascript Bibliothek zusammengefasst.

Dies ermdglicht auch weitere geplante Funktionalitaten (wie der asymmetrische
Kommnuikationskanal zur Requestunabhangigen Server - Client Kommunikation) zentral
entwickelt und mittels Dependency Management schnell in die ChatClients Uberfuhrt werden.

Initiale Schatzung 1

Technologien * Javascript
* Typescript

Abhangigkeiten keine

Anforderungen * Die Library lasst sich in Node und Browser Javascript einbinden * Die Library
nutzt semantische Versionierung zur Erméglichung von Non-Breaking-Updates *
Die fertige Library lasst sich via Dependency-Management (npm/yarn/webpack)
userseitig einbinden und updaten * Die Library enthalt typisierte (typescript)
Entitaten fur Common Request und Response Format(e) * Die Library enthalt
Unit-Tests flr essentielle Funktionen und Typen * Die Library ist dokumentiert,
sowohl was Nutzung, als auch Contribution angeht * Die Library verbessert die
Collaboration mittels Linting-Regeln und Workflow-Scripten

Tasks * BOT-33 Library Usage Dokumentieren
* BOT-34 Library in Discord Bot integrieren
* BOT-35 Library in Telegram Bot integrieren
* BOT-36 Library in Website integrieren
* BOT-31 Common Funktionalitat / Use Cases identifizieren
* BOT-32 Typescript Library flr Bot erstellen

BOT-37: Discord Integration des BHT-Bot

Discord ist eine weit verbreitete Kommunikatinsplattform, auf der Nutzer sich in ,Servern“
vernetzen und dort meist thematisch organisiert kommunizieren kénnen. Die Projektgruppe des
WS2020 ist selbst Teil der Zielgruppe des Discord-Messengers, wodurch sich diesese Plattform
besonders eignet um einen weiteren Chatservice (neben Telegram) an den BHT-Bot anzubinden.
Eine Implementation des Chatbots innerhalb der Discord-Struktur steigert somit zum Einen die
Verbreitung(smaoglichkeit) des BHT-Bot und bietet gleichzeitig eine gute Mdglichkeit Debug-Bot-
Instanzen im praferierten Messenger zu betreiben.

Initiale Schatzung 2

Technologien * Javascript
* Docker

Abhangigkeiten *BOT-30

https://wiki.ziemers.de/wiki/software/beuthbot/berichte/ws2020/alt/dennis Gedruckt 01.02.2026 07:03

Pflichtenheft Features

Anforderungen * Der Discourse Bot benutzt die zu entwickelnde zentralisierte Library
zur Gateway Kommunikation um Coderedundanz mit dem Telegram
Bot zu verhindern
* Der Discourse Bot kann (direkte) Nutzer-Nachrichten mittels
Gateway verarbeiten und antwortet dem User entsprechend
* Wenn keine Verbindung mit dem Gateway besteht oder Fehler bei
Anfragen auftreten reagiert der Chatbot durch Prasentation einer
hilfreichen Fehlermeldung
* Der Discourse Bot wird aquivalent zum Telgram Bot in das BHT-Bot
Universum mittels Docker + compose integriert
* Der Discourse Bot ist nicht Teil des BHT Bot, er wird als paralleler,
unabhangiger Service betrieben
* Alle Credentials und Urls/Ports werden aus dem Environment
bezogen, es gibt keine hard-coded Referenzen zu Strukturen des
BHT-Bot Gateways

Tasks * BOT-38 NodeJS Chatbot erstellen
* BOT-39 Docker Container + Compose fur Container erstellen
* BOT-40 Bot Usage dokumentieren
* BOT-41 Bot Account anlegen fur release
(https://discord.com/developers/applications)
* BOT-42 Bot Container in Beuth-Docker-Netzwerk einbinden
(release)

BOT-43: Erstellung eines Common-Frameworks fur (Content-)Services

Services im BHT-Bot kommunizieren alle Gber REST-Schnittstellen. Diese sind alle als Express-
Anwendung mit JSON-Kommunikation implementiert, was fur viel Code-Redundanz flhrt.
Gleichzeitig benutzt kein Service strukturierte Darstellungen der Schnittstellen, wie Anfragen und
Antworten zum Gateway, User Daten oder Rasa-Intents.

Ein spezieller, repititiver, Unterfall der Microservices sind solche, die Content bereitstellen. Diese
erhalten alle Nachrichten vom Gateway und senden ihre antworten auch dort wieder zurick.
Request- und Response sind durch das Gateway definiert, die resultierende Struktur ist
entsprechend flr alle Contentservices prinzipiell Identisch.

Zur Vermeidung von Code-Redundanzen und Erleichterung des ,Kick-Off* eines neuen Content-
Services sollen die Common Funktionen und Entitaten in ein Framework gegossen werden

Initiale Schatzung 1

Technologien * Javascript
* Typescript
* Dockerfile

Abhangigkeiten * BOT-37

Seite 2/8

https://discord.com/developers/applications

Pflichtenheft Features

Anforderungen * Das Framework implementiert eine NodeJS Express REST-
API, aquivalent zu den existierenden Content-Services
* Das Framework Iasst sich in Node)JS Anwendungen via
Dependency-Management einbinden (npm/yarn)
* Das Framework abstrahiert den (Express) Server und dessen
Routing, so dass ein Contentservices nur noch die Response
implementieren muss
* Das Framework implementiert die Schnittstelle zum
Datenbankservice um a) Userdaten zu speichern/abzurufen
und b) eigene Daten zu speicher und abzurufen
* Das Framework fillt die “debug-history” der Requests so,
dass ein Service dieses Feature zwangsweise implementiert /
nutzt
* Requests, Responses, User, Rasa-Intents und ggf. weitere
Entitaten werden durch das Framework als typisierte
(typescript) Objekte definiert
* Das Framework wird in allen bestehenden und geplanten
Content-Services implementiert: Wetter, Mensa, Reminder
* Die Nutzung des Frameworks ist verstandlich dokumentiert
* Die Contribution wird mittels Linting, Dokumentation und
Build-Scripts erleichtert
* Das Framework nutzt types aus der (noch zu entwickelnde)
BHT-Bot Library um Redundanzen zwischen Client-Bibliothem
und Service-Framwork zu vermeiden

Tasks * BOT-44 Common Code, Features, Entitaten identifizieren -
Use Case ableiten
* BOT-45 Typisiertes Javascript Framework erstellen
* BOT-46 Framework einbinden in Weather Service
* BOT-47 Framework einbinden in Mensa Service
* BOT-48 Framework einbinden in Reminder Service
* BOT-108 Framework dokumentieren
* BOT-117 Request History implementieren - Nutzung
enforcen

BOT-49: User-Messenger-Service: Nachricht proaktiv, requestunabhangig an Clients senden
Der BHT-Bot kann bisher nur passiv auf Anfragen warten und diese dann beantworten. Zur
Implementierung von asymmetrischer bzw. request-unabhangiger Kommunikation bendtigt der Bot
einen neuen Service, der als Schnittstelle fur diese Art von Kommunikation dient.
Initiale Schatzung 2.5
Technologien * Javascript

* Websockets

* Docker

Abhangigkeiten * BOT-30

Seite 3/8 https://ds-maximum.de

Pflichtenheft Features

Anforderungen * Der User-Messenger-Service kann eine Nachricht an einen User (via Client-
Unabhangiger User-ID) senden
* Wenn ein User mehrere Clients benutzt, wird die Nachricht an alle Clients
gesendet
* Wenn ein User (Uber langere Zeit) nicht erreichbar ist wird die Kennung entfernt
* Wenn eine Nachricht nicht an einen User gesendet werden kann bekommt der
auslosende Service diese Information unterscheidbar zwischen a) Der Nutzer ist
gerade nicht erreichbar b) Der Nutzer ist dauerhaft nicht erreichbar (geldscht) c)
Der Dienst ist generell unhealthy
* Der Service wird als Docker Image via docker-compose in die BHT-Bot
Infrastruktur integirert. Er ist Teil des BHT-Bot Repositories
* Die Funktionalitat des Services wird auf Clientseite in die Common-Chatbot-
Library (BOT-30)
* Alle bestehenden ChatBot-Services werden an den Messenger Service
angebunden (Telegram, Discord)

Tasks * BOT-50 Websocket Registry flr ChatBotClients
* BOT-51 REST-Service fur Nachrichtenversand
* BOT-52 Implementation der Websocket-Registrierung in Common-Library far
Chatbots
* BOT-53 Implementierung der Common-Library-Websocket-Registrierung in
TelegramBot
* BOT-54 Implementierung der Common-Library-Websocket-Registrierung in
DiscordBot
* BOT-56 Dokumentation Usage Service
* BOT-110 Deployment / Release

BOT-55: Erinnerungs-Service: Behandelt ,,erinnere mich“ Befehle und erinnert bei Falligkeit autonom

Erinnerungen schedulen zu kénnen ist ein typischer, weil praktischer, Anwendungsfall in beliebten
(Business) Kommunikations-Services wie Slack oder Mattermost. In beiden Fallen wird diese
Funktionalitat durch die hauseigenen Reminder-Bots zur Verfligung gestellt.

Um die Featuredichte des BHT-Bot zu erh6hen wird ein Reminder-Service erstellt, durch den
identische Funktionalitat wie bei genannten Diensten zur Verfiigung stellt. Durch die Multi-
Messenger-Fahigkeit des BHT-Bot wird dieses Feature somit auch fur User angeboten, deren
Kommunikations-Plattform keinen eigenen Reminder-Bot anbietet.

BeispielAnfragen:

* Erinnere mich am 22.10. an die Klausur in Mathe

* Erinnere mich jeden Donnerstag um 18 Uhr an den Ballettkurs

* Erinnere mich jedes Jahr am 01.01 an den Geburtstag meiner Mutter.

* Erinnere mich in 10 Tagen das Probeabonnement zu kindigen

* <Erinnere> <Zeitpunkt/Zeitspanne/Interval> <Thema>

Initiale Schatzung 3

Technologien * Javascript
* Docker
* Rasa
* MongoDB
* Cronjob

Abhangigkeiten *BOT-43
* BOT-30
* BOT-12
* BOT-49

Seite 4 /8

Pflichtenheft Features

Anforderungen

Tasks

* Erfolgreiche ,erinnere“-Anfragen werden vom Dienst durch
Bestatigung der erkannten und persistierten Daten
beantwortetoder

* Fehlerhafte “erinnere”-Anfragen werden durch ein Mini-
Usage-Tutorial beantwortet, damit der User seine Anfrage
korrigieren kann

* Erinnerungen werden auf user-ebene (clientunabhangig)
gespeichert, so dass ein User die gleichen Erinnerungen in
allen genutzten Clients zur Verfigung hat

* Erinnerungen werden bei Falligkeit einmalig (an alle clients
des users) ausgespielt

* Wiederkehrende Erinnerungen werden ausgespielt und
anschliefend an Hand des Intervals neu terminiert

* Der Nutzer kann Erinnerungen l6schen

* Der Nutzer kann seine Erinnerungen anzeigen lassen

* Der Service wird als Docker Container via docker-compose
verwaltet und in das BHT-Repository integriert

* Der Service nutzt das (noch zu schaffende) Content-Service-
Framework

* Wenn der Reminder-Service nach einem Ausfall wieder aktiv
wird erinnert er nicht (einzeln) an alle Termine, die
zwischenzeitig fallig waren

* Der Serive ist in Hilfe-Texten des (Chat) BHT-Bots integriert

* BOT-57 Rasa Anbindung , Erinnere“-Direktive

* BOT-58 Service Endpoint speichert Reminder und Antwortet
auf Probleme

* BOT-59 Scheduler/Cronjob prift und sendet regelmaRig
fallige Erinnerungen

* BOT-60 Dokumentation Service Usage

* BOT-109 Deployment / Release

* BOT-112 Hilfe-Texte in (Chat)BHT-Bot help-command /
willkommensnachricht

BOT-82: Termin-Scraper, der automatisch Erinnerungen aus offentlichen Quellen bezieht

Es gibt Termine, an die wollen alle Studierenden typischerweise erinnert werden, als auch Termine,
von denen die Universitat mdchte, dass die Studierende sich daran erinnern. Typische Beispiele
hierfir sind Rickmeldefristen und (Beuth-eigene) Feiertage.

Durch einen Webscraper sollen solche Termine aus (6ffentlichen) Quellen automatisch bezogen und
dann an alle Studierenden ausgespielt werden.

Auch wenn dieses Feature fur die meisten Studierenden interesssant sein dirfte, muss es eine
Mdglichkeit zum Opt-Out geben. Ggf. ist sogar angezeigt, dass ein Opt-In erfolgt, was allerdings den
Nutzen des Features, vor allem aus Universitatssicht, mindern wurde.

Initiale Schatzung

Technologien

* Javascript

* Docker
* HTML-DOM
Abhangigkeiten * BOT-55
Seite 5/8 https://ds-maximum.de

Pflichtenheft Features

Anforderungen * Relevante Termine werden regelmaliig, automatisch bezogen
und als Erinnerung gespeichert
* User kdnnen “globale Erinnerungen” aktivieren oder deaktivieren
* Das Feature ist resistent gegen Anderungen an den Domains
oder deren Struktur - Fallen gescrapete Dienste langer aus wird
dies reported
* Das Feature wird als nicht-eigenstandig in den Reminder Service
integriert
* Das Feature ist bzgl. Opt-in oder Opt-out in den Hilfe-
Texten/BegrifBungsnachrichten des BHT-Bot dokumentiert

Tasks * BOT-83 Prufen ob Opt-In (ndtig ist) oder Opt-Out (mdglich ist)
* BOT-84 Quellen mit relevanten Terminen zusammentragen - auf
Scrapebarkeit achten
* BOT-85 Scraping (mittels Scapring-Service) implementieren
* BOT-86 Termine aus Scraping in Erinnerungs Datenbank
uberfihren
* BOT-87 Rasa Direktive Opt-In oder Opt-Out implementieren
* BOT-88 Error-Reporting implementieren, bei Misslungenen
Scraping (Uber gewisse Zeit hinweg)

* BOT-114 Opt-In oder Opt-Out in Hilfe-Texten /
Willkommensnachricht dokumentieren

BOT-89: Moodle iCal import als Erinnerungen

Moodle ist die zentrale Online-Lernplattform der Beuth Hochschule. Kurse, die in Moodle verwaltet
werden erhalten in der Regel Abgabetermine fir Aufgaben, die wahrend des Semesters fallig
werden. Oftmals stehen diese Abgabetermine bereits zu Beginn des Semesters in Moodle fest und
kénnen dort in einer Kalenderansicht betrachtet werden.

Moodle bietet auBerdem eine Funktion zum Export der Eintragungen im eigenen Kalender:
https://Ims.beuth-hochschule.de/calendar/export.php

Der User kann hier einen Link erzeugen, Uber den eine iCal Datei bezogen werden kann. Diese Datei
enthalt die Semestertermine und kann entsprechend in Erinnerungen des Bots umgewandelt
werden

Initiale Schatzung 1
Technologien * Javascript
*iCal
* Rasa
Abhangigkeiten * BOT-55
Anforderungen * Der User kann dem Bot seinen Moodle-Kalender-Export-Link

senden um einen Import auszulésen

* Die iCal Datei hinter dem Export-Link wird in Erinnerungs-
Eintrage des Erinnerungs-Service umgewandelt

* Erinnerungen an Abgabetermine erfolgen zu Beginn des
Tages / zeitlich versetzt vor der Falligkeit der Abgabe, nicht
zum im Kalender angegebenen Zeitpunkt

* Das Moodle-Import Feature wird nicht-eigenstandig in den
Reminder-Service integriert

* Das Feature (und seine Nutzung) ist in der BHT-Bot Hilfe
gelistet

Seite 6 /8

https://lms.beuth-hochschule.de/calendar/export.php

Pflichtenheft Features

Tasks * BOT-90 Import Moodle Rasa Direktive
* BOT-91 Moodle iCal Download via zentralem Scaper Service
* BOT-92 iCal Parsing und Persistierung als (sinnvolle)
Erinnerung
* BOT-111 Feature Release
* BOT-113 Hilfe-Texte in (Chat)BHT-Bot help-command /
willkommensnachricht

BACKLOG BOT-106: Monitoring bzw. Alerting Features

Aktuell gibt es keine Stelle durch die sich der Bot im Falle von Problemen bemerkbar machen kann.
So fallen Ausfalle von ganzen Servicen ebenso wenig auf, wie der Ausfall von Teil-Logiken.

2 aktuelle Beispiele:

1) Der Bot stirzt regelmalig ab, der Container startet neu und funktioniert wieder. Kein Admin kann
derzeit mitbekommen oder analysieren warum das so ist.

2) Services die bspw. Webscraping einsetzen werden zwangsweise irgendwann unfunktional, weil
sich die genutzten Endpunkte / Strukturen andern ohne dass dies von Admin/Entwicklerseite
bekannt ist. Solche Dienste fallen ggf. vom Service sogar richtig behandelt aus, so dass der User ein
Fehler-Feedback bekommt, Admins bekommen diese Information aber wiederum nicht

BACKLOG BOT-115: History Feature prifen

Im Gesprach mit Lukas aus dem S0Se2020 wurde bekannt, dass das ,History Feature” letztes
Semester etwas vernachlassigt wurde. Es handelt sich um ein Array, das bei Requests
weitergereicht und von jedem Service mit eigenen Eintragen beflllt wird, so dass zu jedem
Zeitpunkt ersichtlich wird welche Services bereits Kontakt mit dem Request hatten

Da dieses Feature nutzlich beim Debuggen ist, aber nur helfen kann, wenn gentgend Informationen
darin gesammelt werden, muss die Konsistenz tUberpruft und mindestens in neuen Services wieder
hergestellt werden

BACKLOG BOT-119: Mock-Option fur Deconcentrator

Aus Gesprach mit Lukas aus S05e2020 hat sich ergeben, dass die Sprachverarbeitung in friheren
Stadien des BHT-Bot gemocked wurde. Dieses Feature ist nicht mehr funktionsfahig, fur die
Entwicklung kdnnte eine solche Implementation allerdings hilfreich sein:

Wenn ein Service entwickelt wird kann dieser nur durch User angesprochen werden, wenn der
Concentrator User-Requests korrekt parsed. Dies beinhaltet die Weitergabe und Analyse des
Requests mittels Sprachananalyse Services, aktuell insbesondere durch Rasa.

Um einen Service unabhangig von Rasa-Training und NLP testen/entwickeln zu kénnen wird ein
Mock-Feature fur den oder als Ersatz fir den Concentrator entwickelt.

BACKLOG BOT-121: Database und Database _micrososervice zusammenfuhren

Es gibt derzeit 2 Services, die im Grunde das gleiche zu machen scheinen:
https://github.com/beuthbot/database_microservice

https://github.com/beuthbot/database/

Der Unterschied scheint lediglich in der bereitgestellten Funktionalitat zu liegen: Wahrend der
»database” Service lediglich userbezogene Abfragen behandelt kann der ,database_mircoservice”
Service arbitrare Datensatze der Services persistieren. Im Kern dienen beide Services aber lediglich
dazu eine zentrale Schnittselle zur gleichen Mongo-DB herzustellen

Diese dopplung der Datenbankservices ist nicht dokumentiert, oder zumindest ist diese
Dokumentation nicht sichtbar geworden. Daher gilt es die beiden Datenbanservices zu einer
logischen Einheit zu vereinen, oder zumindest sicherzustellen, dass nachfolgende Entwicklerlnnen
erkennen kdnnen dass es hier eine ,,unlogische” Service-Redundanz gibt

BOT-XXX: EPIC_TITLE

Seite 7/8 https://ds-maximum.de

https://github.com/beuthbot/database_microservice
https://github.com/beuthbot/database/

Pflichtenheft Features

EPIC_DESCRIPTION
Initiale Schatzung TIME

Technologien * <Programmiersprache 1>
* <Containerisierung 1>
* <Bot Servie 1>

Abhangigkeiten * <Ticket ID1>
* <Ticket ID2>

Anforderungen * <Anforderung 1>
* <Anforderung 2>

Tasks * <Taskl>
* <Task2>

Nutzungshinweis: Auf dieses vorliegende Schulungs- oder Beratungsdokument (ggf.) erlangt der
Mandant vertragsgemald ein nicht ausschlielliches, dauerhaftes, unbeschranktes, unwiderrufliches
und nicht Ubertragbares Nutzungsrecht. Eine hieruber hinausgehende, nicht zuvor durch
datenschutz-maximum bewilligte Nutzung ist verboten und wird urheberrechtlich verfolgt.

Seite 8 /8

	Pflichtenheft Features

