
 datenschutz-maximum Version 13.12.2019 10:18, Seite 1 / 38

https://wiki.ziemers.de/wiki/software/beuthbot/berichte/ws2019/zwischen?rev=1576228704 Gedruckt 03.08.2025 12:06

Interim Report to the Master Project WS 2019/20 |
Zwischenbericht zum Masterprojekt WS 2019/20

Introduction / Summary

Motivation

A large number of companies are renewing their customer service in order to quickly bring their range
of offers to potential buyers. Digitalization is a useful tool for bringing information to interested
parties. The chatbot plays an important role here. Chatbots are dialogue systems that communicate
via voice or text messages. Chatbots are used in various areas and present a variety of offers to
inform users. There are also other categories, such as chatbots, which provide specific information
about the weather. The Beuth University of Applied Sciences in Berlin offers its students, employees,
scientific staff and teachers various services. The focus is on important questions such as when the
opening hours of Beuth University are. For students, the opening hours of the library, the study
administration, the dean's offices, the study and recreation rooms are also important. For these
reasons Professor Thomas Ziemer proposes to develop a chatbot for the university.

Target group

The chatbot is aimed primarily at students, teachers and visitors to Beuth University. It helps the
above mentioned groups to quickly get information about the learning rooms, Mensaplan and other
services of the university. The chatbot also provides information about the weather.

Scope

Beuth University has an interest in offering a service that leads through the university. This service is
intended to help new students find their way around Beuth University. This includes, among other
things, that students have knowledge of exam dates and the teaching staff's consultation hours in
order to better organize their studies. The chatbot also answers questions about the Mensaplan. The
Mensa's offer is varied, e.g. the Chatbot answers to inquiries, when there is vegetarian or vegan food.
It has other functions as well: So it can answer questions about the next week's menu and can
consider hints from users, such as the request of a vegetarian.

Interim Report to the Team Project WS 2019/20 | Zwischenbericht zum Masterprojekt WS 2019/20

Seite 2 / 38

Software Architecture

Table of content

Table of content1.
Overview2.
Basic Structure3.

Bota.
Gatewayb.
Registryc.
Serviced.

API4.

Overview

BeuthBot consists of many interwoven Microservices. Evey Microservice uses our basic API to
communicate with other Microservices. This approach enables us to change parts of the system
easily at any time or to introduce new Microservices, all they need to do is to implement our
API.

Basic Structure

Our application is basically composed of the following four components.

Bot ⇔ Gateway ⇔ Registry ⇔ Service

Following diagram shows that in more detail:

nlp

rasa-ai droolsGoogle Cloud Speech API Google Cloud Natural Language Microsoft Azure Spracherkennungs-API Microsoft Azure Textanalyse-API

Bot

TelegramBot TwitterBot Gateway

MetaMetaPersistence

MetaPersistence

Registry

Service

MensaService WetterService

1..*

1

1

1

*

A user can write the Bot to request informations, the meaning of the message is extracted and
a fitting Microservice is choosen to retrieve the necessary data. A response is build from that
data and distributed back up to the bot which answers the users request.

Following sequence diagram further illustrates that:

Interim Report to the Team Project WS 2019/20 | Zwischenbericht zum Masterprojekt WS 2019/20

Seite 3 / 38 https://ds-maximum.de

Bot

Bot

Gateway

Gateway

nlp

nlp

Registry

Registry

Service

Service

request

request

request<message>

request<message>

request<message>

response

response

response (text)

response (audio)

response (text|audio)

Bot

This is an abstraction for the available chatbots, e.g. a Bot for Telegram and another Bot for
WhatsApp.

The user interacts with this Microservice, here she can request information and gets answers
from BeuthBot.

Gateway

The Gateway is the centerpiece of BeuthBot one could say.

The Bot notifies the Gateway with the message it got from the user.

The Gateway then uses NLP (Natural Language Processing) Microservices to get the meaning
and intention of the user. Here we try to extract what the user wants from BeuthBot, to notify
the right service and present a fitting answer to our user.

Registry

After obtaining the intention of our user, the Gateway notifies the Registry, to get the
information the user requested.

The Registry distributes the request to the correct Service, that takes care of retrieving the right
informations.

Interim Report to the Team Project WS 2019/20 | Zwischenbericht zum Masterprojekt WS 2019/20

Seite 4 / 38

Service

Service is an abstraction for the implemented Microservices that retrieve the necessary data we
need to answer users requests. E.g. the MensaService is a Microservice that can give
informations about the current menu, filtered by a number of parameters, e.g. a vegan user.

API

Because of the complexity of the single Microservices, every single Microservice implements its
own, distinct, API.

But to answer a users request we use a unified, comprehensive API. Its basic idea is to pass a
Response-Object trough the individual Microservices, which consists of the initial request, an
answer as a response to the users request and informations about the user.

Following class diagram further illustrates that:

Request

platform
userId
message: Message
history: Trace
metadata: KeyValueStore
answer(): Response

Message

id: unique
evaluated: Meaning
evaluate()

Response

request: Request
answer
history: Trace

TextMessage

content

AudioMessage

url

Interim Report to the Team Project WS 2019/20 | Zwischenbericht zum Masterprojekt WS 2019/20

Seite 5 / 38 https://ds-maximum.de

Requirement Analysis BeuthBot

Functional requirements

/F100/ The system must allow the user to enter requests by text or language
/F101/ The system should be able to learn from errors from incoming messages
/F102/ The system must understand user input
/F103/ The system must be able to respond contextually to user input
/F104/ The system must persist messages in a database anonymously
/F105/ The system must be able to persist and retrieve specified preferences for users
/F200/ The system must be able to retrieve the Beuth Mensa menu for a specific day from the
OpenMensa API
/F201/ The system must be able to forward the menu from the OpenMensa API
/F202/ The system must be able to filter and probe the menu according to the user's
specifications
/F203/ The system must be able to cache the food plan

/F300/ The system must be able to access the learning rooms of Beuth University of Applied
Sciences Berlin
/F301/ The system must be able to forward where the learning rooms are located.

/F400/ System must be able to remind user of appointments
/F401/ The system must have access to the user's appointment calendar

/F500/ The system must be able to call up the opening hours of the Beuth University buildings.
/F501/ The system must be able to cache opening hours

/F600/ The system must be able to retrieve the current weather for Berlin via a Weather API
/F601/ The system must be able to forward the current weather
/F602/ The system must be able to cache the current weather

/F700/ The system must be able to call up the examination dates for exams at the Beuth
University for Applied Sciences
/F701/ The system must be able to forward the test dates
/F702/ The system must be able to filter and probe the examination dates according to user
specifications
/F703/ The system must be able to cache the test dates

/F800/ The system must be able to call up the winding rooms at the Beuth University for
Applied Sciences.
/F801/ The system must be able to forward where the winding rooms are located.
/F802/ The system must be able to cache the winding rooms

Non-functional requirements

/NF100/ The system must respond to a message within 3 seconds
/NF101/ The system must retrieve data from the microservices within a few milliseconds
/NF102/ The system must be able to process and evaluate a message within 1.5 seconds
/NF103/ The system must have enough memory for persistence of data from ~13k students

https://openmensa.org
https://openweathermap.org

Interim Report to the Team Project WS 2019/20 | Zwischenbericht zum Masterprojekt WS 2019/20

Seite 6 / 38

/NF200/ Service downtime (NLP component, microservices, gateway) should be less than 1%
/NF201/ ref. /NF100/
/NF202/ ref. /NF101/
/NF203/ ref. /NF102/
/NF204/ Database downtime should be less than 1%

/NF300/ The system should be as modular as possible
/NF301/ The system should be easily scalable
/NF302/ The system should contain easily replaceable components
/NF303/ The system should store understandable error messages

/NF400/ The system should be easily portable to other systems

/NF500/ The system should comply with DSGVO guidelines
/NF501/ The system should be based on security standards
/NF502/ Databases should be protected from unwanted access
/NF503/ The databases should be password protected
/NF504/ The databases should be based on security standards

/NF600/ The system should restart the service independently in the event of a service failure

/NF700/ The system should be well documented
/NF701/ The system should be easy to understand

Use cases

In the following we present three usecases in detail, which exemplarily describe our functional
requirements.

Use case /F103/

Title: Responding to user input

Short description: User sends a message to the chatbot via text or speech and the bot replies
to it.

Actor: User

Preconditions: The chatbot, NLP component, gateway, registry and microservices are running

Basic flow: The user writes a message to the bot via telegram. This message is processed and
evaluated by the NLP component, then the message, including the evaluation of the NLP
component, is persisted in the database and forwarded to a corresponding microservice, which
then generates a response and sends it back.

Effects: The user gets a reply from the chatbot, which refers to his message.

Interim Report to the Team Project WS 2019/20 | Zwischenbericht zum Masterprojekt WS 2019/20

Seite 7 / 38 https://ds-maximum.de

Use case /F200/

Title: User asks for today's menu of the mensa

Short description: User sends a request to the chatbot that he would like to know what there
is to eat in the mensa today.

Actor: User

Preconditions: The chatbot, the NLP component, the Mensa micro service, the gateway and
the registry are running.

Basic flow: The user writes a message to the bot via telegram. The NLP component recognizes
that the user wants to have today's menu of the mensa. The evaluated message is forwarded to
the mensa microservice. The microservice reads out what is required and asks the OpenMensa
API for the mensaplan for the Beuth University of Applied Sciences. An answer is generated
from the object which the microservice receives from the API and sent back to the user.

Effects: The user gets an answer from the chatbot containing today's menu of the mensa.

Use case /F300/

Title: Output learning spaces

Short description: The user wants to know which learning rooms there are and where they
are, the chatbot gives him the information.

Actor: User

Preconditions: The chatbot, NLP component, gateway, registry, and learning room service are
running.

Basic flow: User writes to the chatbot that he wants to know which learning rooms there are.
The system processes the message and forwards it to the learning room microservice. If the
learning rooms have not yet been cached, the service uses web scraping to search for the
required information on the corresponding website, generates a response from it and sends it to
the user.

Effects: The user receives an answer from the chatbot containing the required information.

Interim Report to the Team Project WS 2019/20 | Zwischenbericht zum Masterprojekt WS 2019/20

Seite 8 / 38

Bot Documentation

Telegram Bot build for the BeuthBot-Project, with easy extensibility and customization in
mind.

Bla bla

Table of content

Bot Documentationa.
Table Of Contentb.
Getting Startedc.

PrerequisitesI.
InstallingII.

Overview4.
Structure5.
Functionalities6.

User RequestsI.
CommandsII.
FunctionsIII.
BotFatherIV.

Further Development7.
Further Reading8.
Prerequisites9.
Versioning10.
Authors11.

Getting Started

These instructions will get you a copy of the project up and running on your local machine
for development and testing purposes.

Prerequisites

You will need a current version of node & npm.

Installing

After cloning the repository, install the dependencies. You can then run the project.

install dependencies
> npm install

serve at localhost:8000
> npm start

https://telegram.org/
https://nodejs.org/en/

Interim Report to the Team Project WS 2019/20 | Zwischenbericht zum Masterprojekt WS 2019/20

Seite 9 / 38 https://ds-maximum.de

Overview

The bot is basically a Node-Express-Backend. Incoming requests are checked and
specifically handled.

Structure

The bot is separated into two files. index.js contains the fundamental logic. The bot get
created with its token and waits for incoming events. For example an incoming message.
The bot then calls a handler function.

These handlers can be found in the second file, commands.js. This file contains the
available commands as an Object. Furthermore does ist contain functions to determine if
a message contains a commands and to answer the several requests a user can make.

Functionalities

User Requests

The bot supports three different kinds of user requests:

- Message: A user sends a message to the bot. We then check if the message contains a
command. Commands are declared with a prefixed '/' in Telegram.

- Callback Queries: The bot can answer with a question, providing the user a simple
interface, using a button matrix. When the user clicks on of these buttons we get a
callback query.

- Inline Queries: Users can call our bot from within another chat by prefixing the
botname with an '@'. The user can then send a text to the bot, which results in an inline
query. The result that the bot gives back is inserted in the chat, where the user called the
bot from.

Commands

The commands.js-file contains an commands-object. Every entry of this object is a
supported command. The Key is always the command string, prefixed with '/', eg: '/help'.
The value for these keys is an object containing an description, and options object and
the reference to the function that renders the answer for the specific command.

const commands = {
 '/help': {
 answer: renderHelpString,
 description: 'Get a helpful list of all available commands
and functionalities',
 options: {

Interim Report to the Team Project WS 2019/20 | Zwischenbericht zum Masterprojekt WS 2019/20

Seite 10 / 38

 parse_mode: 'Markdown'
 }
 },
 '/date': {
 answer: (message => 'What date format do you prefer?'),
 description: 'Get the current timestamp in a chooseable
format',
 options: {
 parse_mode: 'Markdown',
 reply_markup: {
 // this initiates a callback query
 // by giving the user two buttons to answer with
 inline_keyboard: [
 [
 {
 text: 'Zulu',
 callback_data: JSON.stringify({
 command: 'date',
 payload: 'zulu'
 })
 },
 {
 text: 'German',
 callback_data: JSON.stringify({
 command: 'date',
 payload: 'german'
 })
 }
]
]
 }
 }
 }
}

Functions

The 'commands.js'-file provides several functions. Eg. functions to check if a message
contains an command and to find out if the requested command is in the 'commands'-
object, which means it is an supported command.

Further are functions provided to handle Messages (containing normal Commands),
Callback Queries and Inline Queries.

The bot has the following functionalities, that a user can request and use:

- getTimestamp: Get the timestamp of the moment the message containing this
command was send.
- getFormatedTimestamp: Renders the timestamp in Zulu or German format, this is a
function used to answer a Callback Query.

Interim Report to the Team Project WS 2019/20 | Zwischenbericht zum Masterprojekt WS 2019/20

Seite 11 / 38 https://ds-maximum.de

- renderHelpString: Iterates over the commands-object and prints all available commands
and there description.
- supportedMarkdown: This function gives the User a list of supported Markdown markup
by Telegram.

BotFather

The BotFather allows so configure our bot. You can just write the BotFather with Telegram
and the bot will guide you through everything. The BotFather enables you among others
to change the profile picture, description and about text of your bot.

Further you can register the commands and inline queries your bot supports. This allows a
cleaner user experience since the bot will then suggest commands and inline queries
while the user types. So absolutely do register them!

The neccessary commands are:

- '/setcommands' - '/setinline'

Further Development

New commands can simply added to the 'commands'-object but have to follow the
presented structure under commands.

Further Reading

- Telegram Bot API

Built With

- Node.js
- Express.js
- Node-Telegram-Bot-API

Versioning

We use SemVer for versioning. For the versions available, see the tags on this repository.

Authors

- Tobias Klatt - Initial work - GitHub

See also the list of contributors who participated in this project.

https://markdown.de/
https://core.telegram.org/bots
https://core.telegram.org/bots/api
https://nodejs.org/en/
https://expressjs.com/
https://github.com/yagop/node-telegram-bot-api
http://semver.org/
https://github.com/beuthbot/telegram-bot/tags
https://github.com/T0biWan/
https://github.com/beuthbot/telegram-bot/graphs/contributors

Interim Report to the Team Project WS 2019/20 | Zwischenbericht zum Masterprojekt WS 2019/20

Seite 12 / 38

Gateway

The gateway itself is the core microservice of our application. It represents the top (first)
layer in our system architecture and has a direct bidirectional interface to Telegram. The
main functionality of the gateway is to receive and handle all incoming user requests.
Once a user is interacting with our bot - doesn't matter whether the user communicates
via text or voice message - all requests are going to be passed on to the gateway.

Table Of Content

GatewayI.
Table Of ContentII.
Getting StartedIII.

PrerequisitesA.
SetupB.
ReferencesC.

Overview4.
Structure5.
Functionalities6.

VariablesA.
API-CallB.
Microsoft Azure - Cognitive Services - HeadersC.
ServerD.

Further Development7.
Further Reading8.
Built With9.
Versioning10.
Authors11.

Getting Started

The following sections will give an overview how the gateway was created. It is
strongly recommended to read Telegrams bot introduction for developers to get a
better insight what we are talking about in this context.

Every time a Telegram bot receives a message, the bot forwards this message in
form of an API call to a corresponding server that handles all incoming messages.
Once this is done, the server processes the request and a response will be
generated that will go back to the user. In general there are two ways to get
notified about incoming messages:

1. Long polling
2. Webhooks

Within this project we are going to use webhooks.

https://telegram.org/
https://core.telegram.org/bots
https://telegram.org/

Interim Report to the Team Project WS 2019/20 | Zwischenbericht zum Masterprojekt WS 2019/20

Seite 13 / 38 https://ds-maximum.de

Prerequisites

Since the gateway is built from scratch there are no specific requirements or
dependencies.

[Appendum: We decided to establish the server using node.js. That's why an
installation of node and npm is necessary.]

Telegram Bot

As mentioned here our gateway is directly connected to the bot. Therefore the
creation of a Telegram bot is necassary before it comes to the actual
implementation. For test purposes an onw Telegram has been created as part of
preparing the gateway implementation. It is reachable via cbeuthbot on
Telegram. The created bot does not have any kind dependecies to the productive
BeuthBot and is completely autonomous. This means that the system architecture
is intended to be as flexible as possible to enable a simple addition or removel of
different types of bots.

Set Up

Once a Telegram bot has been created and configured, we started to initialize a
local project in a first step. Therefore a project directory has been set up as well as
a > npm init has been executed in this directory. After this step a
package.json has been created automatically. On top of that, express, axios
and body-parser have been installed via > npm install. In this context
express is our application server, axios is an HTTP client and body-parser
helps to parse the response body received from each request. As soon as these
components have been succesfully installed we created our actual gateway - first
simply named index.js.

The content of this file was looking very rudimentary in the beginning. It simply
repsents a 'Ping-Pong' service at this point. This means, if a user writes a message
that includes e.g. the word 'ping' our gateway creates a response with the word
'pong'. The answer will be sent back to the user by using the chat-id. Additionally
we established 3000 as our port for communicating.

At this point we were able to run our server locally by typing in > node index.js.
But a local server implies that the bot cannot call an API. It is desperate need of a
public domain name. This means we have to deploy our application with ZEIT.

Once this is done we have to let telegram know that our bot has to talk to this url
whenver it receives any message in a last step. This get managed through cURL.

References

https://nodejs.org/en/
https://telegram.org/
https://telegram.org/
https://telegram.org/
https://zeit.co/

Interim Report to the Team Project WS 2019/20 | Zwischenbericht zum Masterprojekt WS 2019/20

Seite 14 / 38

During the implementation of the gateway we used this manual as a kind of
orientation.

https://www.sohamkamani.com/blog/2016/09/21/making-a-telegram-bot/

Interim Report to the Team Project WS 2019/20 | Zwischenbericht zum Masterprojekt WS 2019/20

Seite 15 / 38 https://ds-maximum.de

Overview2.

The gateway we built is able to receive incoming messages from our bot and also
standardizes (since there is no guarantee for uniform requests, all incoming
messages are getting standardized in a very first step) all requests. Once this is
done, the gateway calls one or more of our NLU interfaces to evaluate the
message text. This is done via HTTP-POST and json. The evaluation of our
message (score determining) can be done separately or together with the text
analysis. E.g. when using Microsoft Azure Cognitive Services we transfer
our messages with all relevant parameters and as a result out HTTP-POST delivers
the score, entities, key words etc. in form of a json object. With this result we
continue to call the API of our „next“ microservice (in this case the registry) and
pass on all relevant values.

Structure

To give a better overview of how the gateway is built up, the following class
diagram has been created:

Gateway - Class Diagram

StandardizationLayer_Bot

defaultMessage: Object
TextAudioFlag: Boolean
standardizeMessage(): void
getStandardizedMessage(): Message
getAudioMessage(): Object

Gateway

standardizedMessage: Message
evaluateScores(): void

LanguageProcessing

interpretMessage(): void
getInterpretedMessage(): Object
patternMessage(): void
getPatternedMessage(): Object

Registry

StandardizationLayer

This class diagram shows the structure around the gateway. Here it is important
that there is a StandardizationLayer beforehand, which standsardize the incoming
messages. The gateway then directs the message to an NLU service where we get
the evaluated object back and compare the scores. The best evaluated message is
then forwarded to the registry.

Interim Report to the Team Project WS 2019/20 | Zwischenbericht zum Masterprojekt WS 2019/20

Seite 16 / 38

Functionalities

Variables

The defined variables are based on express, body-parser and axios:

var express = require('express')
var app = express()
var bodyParser = require('body-parser')
const axios = require('axios')

API-Call

Each time our bot is mesaged in the chat, the message will be passed on to the
gateway. This is mapped via cURL. All incoming messages use the route
\message-in. If the message has no content, the response is empty. The code for
the described behaviour looks as follows:

app.post('/message-in', function(req, res) { // This is the
route the API will call
 const { message } = req.body
 if (!message || message.text.length < 1) { // In case
a message is not present, or if our message is empty, do
nothing and return an empty response
 return res.end()
 }

Microsoft Azure - Cognitive Services - Headers

Microsot Azure predetermines its specific header that should be used for HTTP-
POST. The header looks like this:

 const options = {
 headers: {
 'Host': 'northeurope.api.cognitive.microsoft.com',
 'Content-Type': 'application/json',
 'Ocp-Apim-Subscription-Key':
'********************************'
 }
 }

HTTP-POST

This section of code shows a request to the Azure service and generates a response
which is sent directly to the bot. The code is shaded like this because Axios

Interim Report to the Team Project WS 2019/20 | Zwischenbericht zum Masterprojekt WS 2019/20

Seite 17 / 38 https://ds-maximum.de

processes the messages asyncronous and we have to ensure a response has
already been received. The following code snippet shows this more in detail:

axios.post('https://northeurope.api.cognitive.microsoft.com/te
xt/analytics/v2.1/sentiment', {
 "documents": [{
 "language": "en",
 "id": message.chat.id,
 "text": message.text
 }]
 }, options).then(function (response) {
 message_out = "[" + message.chat.id + "]: " + "Hi,
your score is " + response.data.documents[0].score + "."
axios.post('https://api.telegram.org/bot:<token>/sendMessage',
{
 chat_id: message.chat.id,
 text: message_out
 }).then(response => {
 // We get here if the message was successfully
posted
 console.log('Message posted')
 res.end('ok')
 })
 })
})

Server

The server is listening on port 3000:

// Finally, start our server
app.listen(3000, function() {
 console.log('Telegram app listening on port 3000!')
})

Further Development

In the short term, we are considering replacing Azure with Rasa to test the modular
requirements. It is later considered that we will connect an NLU adapter that
compares the two services and takes the best results.

Further Reading

To get a deeper insight into the technical components of our gateway, we
recommend to follow up with some of the topics that are mentioned here or here.

Interim Report to the Team Project WS 2019/20 | Zwischenbericht zum Masterprojekt WS 2019/20

Seite 18 / 38

Built With

- Telegram Bot API
- Node.js
- Express.js
- Axios
- Body-Parser
- ZEIT
- cURL
- Microsoft Azure

Versioning

We use GitHub for versioning.

Authors

- Christopher Lehmann - Development & Documentation GitHub

- Timo Bruns - Development GitHub \\

See also the list of contributors who participated in this project.

https://core.telegram.org/bots/api
https://nodejs.org/en/
https://expressjs.com/
https://www.npmjs.com/package/axios
https://www.npmjs.com/package/body-parser
https://zeit.co/
https://wiki.ubuntuusers.de/cURL/
https://azure.microsoft.com/de-de/services/cognitive-services/text-analytics/
https://github.com/
https://github.com/Chr1ssy
https://github.com/Tarry93
https://github.com/beuthbot/gateway/graphs/contributors

Interim Report to the Team Project WS 2019/20 | Zwischenbericht zum Masterprojekt WS 2019/20

Seite 19 / 38 https://ds-maximum.de

Rasa NLU

Rasa is an open source solution for developing „AI assistants“ or chatbots. Rasa
provides a stack consisting of the modules „Rasa NLU“ and „Rasa Core“. With the
help of „Rasa NLU“ the user intention is determined from the received text
message (Intent Recognition) and afterwards the NLU returns all intentions of the
message sorted according to the „Confidence Score“. Training data is required to
record the user's intentions. Furthermore, Rasa NLU allows „entity recognition“
to extract relevant terms from the text. The Rasa Core is a dialog engine that
uses machine-learning trained models to decide which response to send to the
user, such as greet the user. Furthermore, the core allows „session
management“ as well as „context-handling“. Within the project only the
component „Rasa NLU“ will be used, because only the functionality is needed to
capture entities from a text message and to determine the user intention.

Table Of Content

Rasa NLUA.
Table Of ContentB.
Getting StartedC.
Perform Rasa locallyD.
Use of DockerE.
HTTP-APIF.
Further DevelopmentG.
Futher ReadingH.
Built WithI.
AuthorJ.
ReferencesK.

Getting Started

The following instructions are intended to help the user run the Rasa-NLU-
component on the local machine for development.

Understanding Rasa-NLU

Rasa NLU allows the processing of natural language to classify user intentions and
extract entities from text.

e.g.

„Wie ist das Wetter übermorgen?“

The user intention is then determined from the text. In the figure below, the
response to the message is displayed. The user intention („Wetter“) and the date
for tomorrow are illustrated.

{
 "intent": {

Interim Report to the Team Project WS 2019/20 | Zwischenbericht zum Masterprojekt WS 2019/20

Seite 20 / 38

 "name": "wetter",
 "confidence": 0.9518181086
 },
 "entities": [
 {
 "start": 19,
 "end": 29,
 "text": "übermorgen",
 "value": "2020-01-20T00:00:00.000+01:00",
 "confidence": 1.0,
 ...
 }
]
 ...
}

Training data is needed so that Rasa can identify the intention of a text. For this
purpose, training data can be created in the form of Markdown or JSON. You can
define this data in a single file or in multiple files in a directory.

To create a trained model for Rasa from the Markdown or JSON, Rasa offers a REST
API. An alternative to creating trained models is to install Rasa on your local
machine and then create the model using the command „rasa train nlu“. Rasa
creates the training model (tar.gz) from the Markdown or JSON.

Furthermore Rasa NLU is configurable and is defined by pipelines. These pipelines
define how the models are generated with the training data and which entities are
extracted. For this, a preconfigured pipeline with „supervised_embeddings“ is used.
„supervised_embeddings“ allows to tokenize any languages.

Perform Rasa locally

You need the local installation of Rasa to create and test training models. For this,
you use the directory „training“.

Basic requirements

The following installations must be made:
- Pip
- Python (Version 3.6.8)
- Tensorflow
- Making further installations (Rasa Installation)
- If necessary, further installation via pip (depending on the message of the
compiler)

Project structure

https://rasa.com/docs/rasa/user-guide/installation/

Interim Report to the Team Project WS 2019/20 | Zwischenbericht zum Masterprojekt WS 2019/20

Seite 21 / 38 https://ds-maximum.de

The following files and directories are important for the project to configure Rasa,
customize training data and create appropriate training models.

- config.yaml:
contains the configuration of the NLU e.g. specification of the pipeline (how the
trained model is generated)
- /data (directory):
contains training data in the form of JSON (Markdown would also be possible)
- /models (directory):
contains the trained model in the form of tar.gz.files The model is needed to
capture entities and the user intent of a message.

Commands

You need to run the following commands in the directory '.training'.

Create training-model:
rasa train nlu

Communicating with Rasa NLU on the command line:
rasa shell nlu –m models/name-of-the-model.tar.gz

Running Duckling:

After using the command „rasa train nlu“ a model is generated. When
communicating with Rasa via the shell („rasa shell nlu …“) the component
„Duckling“ is not addressed. With Duckling you can identify and resolve dates. To
use Duckling you can add the trained model in the path „docker\rasa-app-
data\models“. Then you can run Rasa and Duckling as docker-containers and query
them using the Rest API. Running Rasa and Duckling as docker-containers are
explained in a later section.

How to generate training datasets

In this project we write training data in the form of JSON, because JSON offers the
possibility to extract entities from a text message. For this purpose the data was
generated with the tool Tracy. In the image below, Tracy is shown with
„Öffnungszeiten“. Entities are added as „slots“, such as „Ort“. Training data follows
in the lower part of the picture. As training data, you can specify messages, which
the user can send to the „chatbot“. Currently the three user intentions „Mensa“,
„Wetter“ and „Öffnungszeiten“ are supported.

https://github.com/YuukanOO/tracy

Interim Report to the Team Project WS 2019/20 | Zwischenbericht zum Masterprojekt WS 2019/20

Seite 22 / 38

Add new Model for Rasa-Container (Docker)

You have to add the generated model (tar.gz) under the path „rasa-app-
data\models“.

Use of Docker

You will need to install Docker in order to use the Docker-Compose-file for running
the application.

Installation instructions for Docker

Installing

After the repository has been cloned and the prerequisites have been fulfilled, you
can run the Docker-Compose-file. The docker commands must be executed in the
'docker'-directory.

build and start Containers && serve at localhost:5005 (rasa)
and at localhost:8000 (duckling)
docker-compose up

stop and remove rasa-containers, volumes, images and
networks
docker-compose down

do the same steps as "docker-compose down"
additionally remove declared volumes in Docker-Compose-file
docker-compose down -v

lists running containers

https://wiki.ziemers.de/_detail/wiki/software/beuthbot/index.png_.png?id=wiki%3Asoftware%3Abeuthbot%3Aberichte%3Aws2019%3Azwischen
https://docs.docker.com/install/

Interim Report to the Team Project WS 2019/20 | Zwischenbericht zum Masterprojekt WS 2019/20

Seite 23 / 38 https://ds-maximum.de

docker ps

connect to the container with a bash
docker exec -it <Container-ID> bash

Overview

As part of the chatbot-project, microservices are supposed to run in Docker-
Containers. In order to start several different services in containers at the same
time, a Docker-Compose-File should be created. A Docker-Image is used for the
Rasa NLU. Duckling has also been added as an Docker-Image for capturing date
entries and allows to parse dates in a structured text.

version: '3.0'
services:
 rasa:
 image: rasa/rasa:1.6.0-spacy-de
 ports:
 - 5005:5005
 volumes:
 - ./rasa-app-data:/app
 command:
 - run
 - --enable-api
 - --cors
 - "*"
 duckling:
 image: rasa/duckling:0.1.6.2
 ports:
 - 8000:8000

The most important file for Rasa is the machine learning trained model (.tar.gz),
which is written in the volume of the docker container. When executing the Rasa
container, the model is needed to recognize user intentions.

HTTP-API

Rasa offers several REST APIs to provide server information, training models, etc.
The Rasa features used in the project are listed here:

- Serverinformation:

You can query the Rasa-server whether it is still running or which Rasa version is
available. You can also check which model Rasa is currently using.

- Model:

You can send requests via the Rest API of the Rasa server to create a trained model

Interim Report to the Team Project WS 2019/20 | Zwischenbericht zum Masterprojekt WS 2019/20

Seite 24 / 38

or load the model into Rasa. You can also send text to the server and Rasa will then
determine the user's intention and the confidence score.

Links:

- HTTP-API (Retrieved 12.12.2019)
- OpenAPI-specification (Retrieved 12.12.2019)

Further Development

For further development, it is important that the existing training data be expanded
and improved.

Further Reading

- Rasa Documentation (Retrieved 12.12.2019)
- Running Rasa with Docker (Retrieved 12.12.2019)

Built With

- Docker-Compose (Retrieved 12.12.2019)
- Docker Hub Rasa (Retrieved 12.12.2019)

Author

- Abirathan Yogarajah

References

- https://rasa.com/ (Retrieved 12.12.2019)
- https://botfriends.de/botwiki/rasa (Retrieved 12.12.2019)
-
https://www.artificial-solutions.com/wp-content/uploads/chatbots-ebook-deutsche.p
df (Retrieved 12.12.2019)
- https://docs.docker.com/ (Retrieved 12.12.2019)

https://rasa.com/docs/rasa/api/http-api/
https://rasa.com/docs/rasa/_static/spec/rasa.yml
https://rasa.com/docs/rasa/
https://rasa.com/docs/rasa/user-guide/running-rasa-with-docker/
https://docs.docker.com/compose/
https://hub.docker.com/r/rasa/rasa
https://rasa.com/
https://botfriends.de/botwiki/rasa
https://www.artificial-solutions.com/wp-content/uploads/chatbots-ebook-deutsche.pdf
https://www.artificial-solutions.com/wp-content/uploads/chatbots-ebook-deutsche.pdf
https://docs.docker.com/

Interim Report to the Team Project WS 2019/20 | Zwischenbericht zum Masterprojekt WS 2019/20

Seite 25 / 38 https://ds-maximum.de

Mensa MicroserviceI.

A microservice for a Chatbot developed at the Beuth University of Applied Sciences
Berlin

Table of content

Mensa MicroserviceA.
Table Of ContentB.
Getting StartedC.

Prerequisitesi.
Cloningii.
Installingiii.

Overview4.
Structure5.
Functionalities6.
The Services-Folder7.

generateResponse.jsi.
mealService.jsii.
mealsOfSpecificDayService.jsiii.

The Routes-Folder8.
Further Development9.
Further Reading10.
Built With11.
Versioning12.
Authors13.

Getting Started

Prerequisites

- node.js
- express.js

Cloning

Get the source code by cloning its repository via https: mensa_microservice

Installing

After cloning the repository, you will need to make sure that you have node
and npm installed on your working system. To check if you already have node
installed, try

node –version

https://nodejs.org/en/
https://expressjs.com/
https://github.com/Onkilchen/mensa_microservice

Interim Report to the Team Project WS 2019/20 | Zwischenbericht zum Masterprojekt WS 2019/20

Seite 26 / 38

Same for checking if npm is installed, just with npm instead of the node
command

npm –version

If you don't have node or npm installed, download the software via the links
provided in Prerequisites or search for them via your preferred search
engine(DuckDuckGo).

After that install all necessesary dependencies in the directory where the
package.json exists

npm install

Now you can start the local development server to play around with the API
and make your calls

npm run dev

This will fire up a development server that listens on port 8000.

If you direct your browser to http://localhost:8000/meals, you will get a list of
the meal plan of the actual day for the mensa at the Beuth University for
Applied Sciences.

Overview

The mensa microservice is basically a Node-Express-Backend. Incoming
requests are checked and specifically handled.

Structure

The microservice consists of four folders containing several scripts, which are
designated to perform certain tasks. Then we have the services-folder
containing files, that consist of functions useful to process incoming requests
from the chatbot and to generate a formatted answer-string, that contains the
requested meal-menu of a specific day from the Beuth mensa. The routes-
folder consists of all the routes, that can be addressed. In the next chapters
we will get into more details about the scripts and their functions.

Functionalities

On request, this microservice makes calls to the OpenMensa API. The
received data is processed by services that give a list of filtered and
unfiltered meals of the mensa of the Beuth University for Applied Sciences.
Mainly this service was built throughout the Masterprojekt module that is a
mandatory part of the media informatics master course of the Beuth

https://duckduckgo.com
https://doc.openmensa.org/api/v2/

Interim Report to the Team Project WS 2019/20 | Zwischenbericht zum Masterprojekt WS 2019/20

Seite 27 / 38 https://ds-maximum.de

University for Applied Sciences.

Project structure

The services-folder

This folder consists of several services, that perform specific tasks for the
microservice.

generateResponse.js

Creates a nicely formatted string from a mensa-JSON-object and caches it.

mealsOfSpecificDay.js

Makes a request to the OpenMensa API and filters by given entities (for
instance vegan and vegetarian meals only).

The routes-folder

This folder contains all the routes, that can be addressed on this server. The
`index.js` manages all the routes. We've only got two routes in our project.
The `/swagger`-route leads you to the swagger documentation of this project.

The `/meals`-route will be called by another component of the Beuthbot via
`POST`. It expects a message JSON-object containing the requested date for
the meals and the filters - to request only specific meals. It then calls all the
functions needed to perform requests and generates an answer, which is
finally send back as a response to the Chatbot.

Further Development

This is still a work in progress, so functionalities and structure might still
change during development

Further Reading

- OpenMensa API

Built With

https://doc.openmensa.org/api/v2/

Interim Report to the Team Project WS 2019/20 | Zwischenbericht zum Masterprojekt WS 2019/20

Seite 28 / 38

- Node.js
- Express.js
- Axios

Versioning

We use SemVer for versioning. For the versions available, see the tags on this
repository.

Authors

- Tolga Karaoglu
- Steven Sobkowski

See also the list of contributors.

https://nodejs.org/en/
https://expressjs.com/
https://www.npmjs.com/package/axios
http://semver.org/
https://github.com/Onkilchen/mensa_microservice/tags
https://github.com/Onkilchen/mensa_microservice/contributors) who participated in this project

Interim Report to the Team Project WS 2019/20 | Zwischenbericht zum Masterprojekt WS 2019/20

Seite 29 / 38 https://ds-maximum.de

Weather microservice

A microservice for a Chatbot developed at the Beuth University of Applied
Sciences Berlin

Table of content
Weather microservicei.
Table of contentii.
Getting Startediii.

Prerequisitesi.
Cloningii.
Installingiii.

Overview4.
Structurei.
Functionalitiesii.

The scripts-folderi.
The services-folderii.

generateResponse.jsi.
weatherService.jsii.
fiveDayWeatherService.jsiii.

The routes-folder3.
Further Development5.
Further Reading6.
Built With7.
Versioning8.
Authors9.

Getting Started

Prerequisites

- node.js
- express.js

Cloning

Get the source code by cloning its repository via https:
weather_microservice

Installing

After cloning the repository, you will need to make sure that
you have node and npm installed on your working system.

https://nodejs.org/en/
https://expressjs.com/
https://github.com/Onkilchen/weather_microservice.git

Interim Report to the Team Project WS 2019/20 | Zwischenbericht zum Masterprojekt WS 2019/20

Seite 30 / 38

To check if you already have node installed, try

node –version

Same for checking if npm is installed, just with npm instead
of the node command

npm –version

If you don't have node or npm installed, download the
Softare via the links provided in Prerequisites or search for
them via your preferred search engine.

After that install all necessesary dependencies

npm install

Now you can start the local development server to play
around with the API and make your calls

npm run dev

This will fire up a development server that listens on port
8000.

If you direct your browser to http://localhost:8000/weather,
you will get the weather forecast for the current day for
Berlin.

Overview

The weather microservice is basically a Node-Express-
Backend. Incoming requests are checked and specifically
handled. It can give you a general forecast for the next five
days or a detailed forecast for the current day.

Structure

The microservice consists of four folders containing several
scripts, which are designated to perform certain tasks. We
have the *scripts*-folder containing scripts, that will be
called by cron-jobs mainly for caching purposes. Then we
have the *services*-folder containing files, that consist of
functions useful to process incoming requests from the
chatbot and to generate a formatted answer-string, that
contains the weather forecast for Berlin. The *routes*-folder
consists of all the routes, that can be addressed. In the next
chapters we will get into more details about the scripts and
their functions.

Interim Report to the Team Project WS 2019/20 | Zwischenbericht zum Masterprojekt WS 2019/20

Seite 31 / 38 https://ds-maximum.de

Functionalities

On request, this microservice makes calls to the
OpenWeatherMap API. The received data is processed by
services that return a nicely formatted string containing the
weather forecast for Berlin. Mainly this service was built
throughout the Masterprojekt module that is a mandatory
part of the media informatics master course of the Beuth
University for Applied Sciences.

The scripts-folder

This folder contains two scripts, that will be called by a cron
job multiple times a day, since we can only do a maximum
of 60 requests to the API per day. getWeather.js makes
a request to the OpenWeatherMap API and caches the
answer. After that writeResponseFile.json is called
and generates a pretty formatted answer-string. Now
everytime a User wants to know the current weather
forecast, we can just read it out of the cached data and
don't need to call the API.

The services-folder

This folder consists of several services, that perform
specific tasks for the microservice.

generateResponse.js

Creates a nicely formatted string from a weather-JSON-
object and caches it.

weatherService.js

Makes a request to the OpenWeatherMap-API to get the
current weather forecast and stores the response.

fiveDayWeatherService.js

If a weather forecast for the next days is requested, than
this script requests the necessary data from the
OpenWeatherMap-API and stores its response.

https://openweathermap.org/api
https://openweathermap.org/api

Interim Report to the Team Project WS 2019/20 | Zwischenbericht zum Masterprojekt WS 2019/20

Seite 32 / 38

The routes-folder

This folder contains all the routes, that can be addressed on
this server. The index.js manages all the routes. We've
only got two routes in our project. The /swagger-route
leads you to the swagger documentation of this project. The
/weather-route will be called by another component of the
Beuthbot. It expects a message object containing the
necessary details for this service. It then calls all the
functions needed to perform requests and generates an
answer, which is finally send back as a response to the
Chatbot.

Further Development

This is still a work in progress, so functionalities and
structure might still change during development

Further Reading

- OpenMensa API

Built With

- Node.js
- Express.js
- Axios

Versioning

We use SemVer for versioning. For the versions available,
see the tags on this repository.

Authors

- Tolga Karaoglu
- Steven Sobkowski

See also the list of contributors who participated in this
project.

https://doc.openmensa.org/api/v2/
https://nodejs.org/en/
https://expressjs.com/
https://www.npmjs.com/package/axios
http://semver.org/
https://github.com/%3Cyou%3E/%3Cyour-repo%3E/tags
https://wiki.ziemers.de/https/github.com/you/your-repo/contributors

Interim Report to the Team Project WS 2019/20 | Zwischenbericht zum Masterprojekt WS 2019/20

Seite 33 / 38 https://ds-maximum.de

Microsoft Azure

Microsoft Azure is a Cloud computing platform from
Microsoft. Our primary used service is the cognitive services
text analytics. For the Beuthbot we use the student version
off Azure.We chose this provider because we did not need
to provide a credit card here.

Table of content

Microsoft Azurei.
Table of contentii.
Student Accountiii.
Cognitive Services Text Analyticstiv.
Knowledgev.

Student Account

The Student Account is an free to use Account from
Microsoft Azure. Here we get some limittet free acess to
different services of the azure programm. Details you can
find under: https://azure.microsoft.com/de-de/free/students/

Because we have problems when creating the account, we
have designed a following short manual:

click on „activate now“ oni.
https://azure.microsoft.com/de-de/free/students/
login with an privat microsoft account(no Universityii.
Mail!)
after login you must verify your Student Account withiii.
University Mail
at last you must ident you by name, mail address andiv.
phone number here you get an activation code what
you must

The important knowledge what we get from this registration
is that we need private microsoft accounts and that the
microsoft support is not very helpful.

Cognitive Services Text Analytics

To use the ervice we create in oure Azure account an
BeuthBot Projekt(resourcesgroup). In this we create an
Cognitive Services Text Analytics in North Europe. Now we
get an Api End Point from Microsoft where we can do „Post
„request with our messages. We have four options to ask
for: the language, analyze sentiment, Extract key phrases

https://azure.microsoft.com/de-de/free/students/
https://azure.microsoft.com/de-de/free/students/

Interim Report to the Team Project WS 2019/20 | Zwischenbericht zum Masterprojekt WS 2019/20

Seite 34 / 38

and Identify linked entities.

More informations about the API you can find her:
https://docs.microsoft.com/de-de/azure/cognitive-services/t
ext-analytics/.

For the moment we use the service direktly in our gateway
later we want to outsource the service in an extra NLU
Request Service(Adapter for NLU).

A Post Request Object in JavaScript should look like the
following example:

POST
https://beutbot.cognitiveservices.azure.com/
text/analytics/v3.0-preview.1/languages
HTTP/1.1

Host: beutbot.cognitiveservices.azure.com

Content-Type: application/json

Ocp-Apim-Subscription-Key:
••••••••••••••••••••••••••••••••

{
 "documents": [
 {
 "id": "",
 "text": ""
 }
]
}

The response body has following structure:

{
 "documents": [
 {
 "id": "",
 "detectedLanguages": [
 {
 "name": "",
 "iso6391Name": "",
 "score":
 }
]
 }
]
 }

https://docs.microsoft.com/de-de/azure/cognitive-services/text-analytics/
https://docs.microsoft.com/de-de/azure/cognitive-services/text-analytics/

Interim Report to the Team Project WS 2019/20 | Zwischenbericht zum Masterprojekt WS 2019/20

Seite 35 / 38 https://ds-maximum.de

To interpret the response we have to write a parser for all
operations what we ask by the API.

Knowledge

Very quickly, we realized that is it not possible to operate a
chatbot with the text analytics services without paying for
the service. Because the free limited acess of the service is
consumed very quickly in our own tests. So, while we can
show that it is possible to use a chatbot with this service, it
will not be usable that way. We allready found out, that IBM
has an also free NLU Service with more request than azure
but there we will have the same problem but we try to
implement this service also, so that we cann show that our
NLU Adapter work and we have different options for
services to request.

Interim Report to the Team Project WS 2019/20 | Zwischenbericht zum Masterprojekt WS 2019/20

Seite 36 / 38

Pricing

Here we show a cost calculation for various NLU services.
The latest figures from the Beuthhochschule were taken.
For students it was expected that you would use all services
and that they would be there 4 days a week. All of this
multiplies the requests per week. Employees were expected
to use only two services, but they also spent 5 days in
college. In the case of lecturers, it was calculated that they
use 2 services, but are only there 1 day a week.

Students Employee external
lecturer

Number of people 12667 787 600

Number of services
used

4 5 1

Number of days
present

6 2 2

Inquiries per week 304008 7870 1200

Total requests per
week

313078

Total requests per
month

1252312

After we have calculated the maximum total number of
inquiries for one month, we have downsized accordingly
the percent of inquiries. These were calculated with the
prices of the providers according to the price lists. With
some providers it was not possible to determine the exact
price and it may be that the price becomes even more
expensive.

providers Cost in
€

100% 80% 60% 40%

Azure 0,844 1057,532€ 845,688€ 634,688€ 422,844€

IBM 0,0009 2254,1616€ 1803,32928€ 1352,49696€ 901,66464€

Google 0,9 1127,7€ 901,8€ 676,8€ 1127,7€

AWS 0,00054 676,24848 540,998784€ 405,749088€ 270,499392€

This table clearly shows that AWS offers the cheapest
service. However, we tend to Azure because there is a
search query with more characters available.

Interim Report to the Team Project WS 2019/20 | Zwischenbericht zum Masterprojekt WS 2019/20

Seite 37 / 38 https://ds-maximum.de

Implemented Product Features

Based on the previous documentation for the Microservices
has already given an impression that we have some
services ready. Each of these services works self-contained.
In order to be able to test all the services together, there
are still a few services that are planned to be implemented
in the next few weeks. In addition, existing ones may need
to be extended to ensure full coverage of all components
planned in the architecture.
Below is a list of which of the defined requirements have
already been implemented. Here a distinction is made
between partially implemented or fully implemented
requirements.

Table Of Content

Implemented Product Featuresi.
Table Of Contentii.
Partially implemented Requirementsiii.
Fully implemented Requirementsiv.

Partially implemented Requirements

The following requirements are partially met, since the
microservice is ready for this, but there is still no full
connection to the system.

/F100/ The system must allow the user to enter requests
by text or language

Here are some NLU services that interpret the text. In
order to generate an answer, we still lack a rule
machine.We do not yet support voice input.

/F200/ The system must be able to retrieve the Beuth
Mensa menu for a specific day from the OpenMensa API
/F201/ The system must be able to forward the menu
from the OpenMensa API
/F202/ The system must be able to filter and probe the
menu according to the user's specifications

Here we already have the microservice but since the
system is not ready the requirement is not fully
supported yet.

Architecturally, we have already started with some

Interim Report to the Team Project WS 2019/20 | Zwischenbericht zum Masterprojekt WS 2019/20

Seite 38 / 38

microservices, some of which are not yet full functional. An
overview of the existing functions has hopefully given you
the pre-recorded documentation.

Fully implemented Requirements

The following Requirements should be fully implemented
our plant with our archtiecture.

/NF300/ The system should be as modular as possible
/NF301/ The system should be easily scalable
/NF302/ The system should contain easily replaceable
components

After assembling it, we have found that our concept works
and our implemented services work. The bot responds to
corresponding requests.

Nutzungshinweis: Auf dieses vorliegende Schulungs- oder
Beratungsdokument (ggf.) erlangt der Mandant
vertragsgemäß ein nicht ausschließliches, dauerhaftes,
unbeschränktes, unwiderrufliches und nicht
übertragbares Nutzungsrecht. Eine hierüber
hinausgehende, nicht zuvor durch datenschutz-maximum
bewilligte Nutzung ist verboten und wird urheberrechtlich
verfolgt.

	[Interim Report to the Master Project WS 2019/20 | Zwischenbericht zum Masterprojekt WS 2019/20]
	Interim Report to the Master Project WS 2019/20 | Zwischenbericht zum Masterprojekt WS 2019/20
	Introduction / Summary
	Motivation
	Target group
	Scope

	Software Architecture
	Table of content
	Overview
	Basic Structure
	Bot
	Gateway
	Registry
	Service

	API

	Requirement Analysis BeuthBot
	Functional requirements
	Non-functional requirements
	Use cases
	Use case /F103/
	Use case /F200/
	Use case /F300/

	Bot Documentation
	Table of content
	Getting Started
	Prerequisites
	Installing

	Overview
	Structure
	Functionalities
	User Requests
	Commands
	Functions
	BotFather

	Further Development
	Further Reading
	Built With
	Versioning
	Authors

	Gateway
	Table Of Content
	Getting Started
	Prerequisites
	Telegram Bot
	Set Up
	References

	Overview
	Structure
	Functionalities
	Variables
	API-Call
	Microsoft Azure - Cognitive Services - Headers
	HTTP-POST
	Server

	Further Development
	Further Reading
	Built With
	Versioning
	Authors
	Rasa NLU
	Table Of Content
	Getting Started
	Understanding Rasa-NLU

	Perform Rasa locally
	Basic requirements
	Project structure
	Commands
	How to generate training datasets
	Add new Model for Rasa-Container (Docker)

	Use of Docker
	Installing
	Overview

	HTTP-API
	Further Development
	Further Reading
	Built With
	Author
	References

	Mensa Microservice
	Table of content
	Getting Started
	Prerequisites
	Cloning
	Installing

	Overview
	Structure
	Functionalities
	Project structure
	The services-folder
	generateResponse.js
	mealsOfSpecificDay.js

	The routes-folder

	Further Development
	Further Reading
	Built With
	Versioning
	Authors

	Weather microservice
	Table of content
	Getting Started
	Prerequisites
	Cloning
	Installing

	Overview
	Structure
	Functionalities
	The scripts-folder
	The services-folder
	generateResponse.js
	weatherService.js
	fiveDayWeatherService.js
	The routes-folder

	Further Development
	Further Reading
	Built With
	Versioning
	Authors
	Microsoft Azure
	Table of content
	Student Account
	Cognitive Services Text Analytics
	Knowledge

	Pricing
	Implemented Product Features
	Table Of Content
	Partially implemented Requirements
	Fully implemented Requirements

