
 datenschutz-maximum Version 12.12.2019 13:21, Seite 1 / 12

https://wiki.ziemers.de/wiki/software/beuthbot/berichte/ws2019/zwischen?rev=1576153312 Gedruckt 31.01.2026 20:13

Interim Report to the Master Project WS 2019/20 |
Zwischenbericht zum Masterprojekt WS 2019/20

Introduction / Summary

Motivation

A large number of companies are renewing their customer service in order to quickly bring their range
of offers to potential buyers. Digitalization is a useful tool for bringing information to interested
parties. The chatbot plays an important role here. Chatbots are dialogue systems that communicate
via voice or text messages. Chatbots are used in various areas and present a variety of offers to
inform users. There are also other categories, such as chatbots, which provide specific information
about the weather. The Beuth University of Applied Sciences in Berlin offers its students, employees,
scientific staff and teachers various services. The focus is on important questions such as when the
opening hours of Beuth University are. For students, the opening hours of the library, the study
administration, the dean's offices, the study and recreation rooms are also important. For these
reasons Professor Thomas Ziemer proposes to develop a chatbot for the university.

Target group

The chatbot is aimed primarily at students, teachers and visitors to Beuth University. It helps the
above mentioned groups to quickly get information about the learning rooms, Mensaplan and other
services of the university. The chatbot also provides information about the weather.

Scope

Beuth University has an interest in offering a service that leads through the university. This service is
intended to help new students find their way around Beuth University. This includes, among other
things, that students have knowledge of exam dates and the teaching staff's consultation hours in
order to better organize their studies. The chatbot also answers questions about the Mensaplan. The
Mensa's offer is varied, e.g. the Chatbot answers to inquiries, when there is vegetarian or vegan food.
It has other functions as well: So it can answer questions about the next week's menu and can
consider hints from users, such as the request of a vegetarian.

Interim Report to the Team Project WS 2019/20 | Zwischenbericht zum Masterprojekt WS 2019/20

Seite 2 / 12

Software Architecture

Table of content

Table of content1.
Overview2.
Basic Structure3.

Bota.
Gatewayb.
Registryc.
Serviced.

API4.

Overview

BeuthBot consists of many interwoven Microservices. Evey Microservice uses our basic API to
communicate with other Microservices. This approach enables us to change parts of the system
easily at any time or to introduce new Microservices, all they need to do is to implement our
API.

Basic Structure

Our application is basically composed of the following four components.

Bot ⇔ Gateway ⇔ Registry ⇔ Service

Following diagram shows that in more detail:

nlp

rasa-ai droolsGoogle Cloud Speech API Google Cloud Natural Language Microsoft Azure Spracherkennungs-API Microsoft Azure Textanalyse-API

Bot

TelegramBot TwitterBot Gateway

MetaMetaPersistence

MetaPersistence

Registry

Service

MensaService WetterService

1..*

1

1

1

*

A user can write the Bot to request informations, the meaning of the message is extracted and
a fitting Microservice is choosen to retrieve the necessary data. A response is build from that
data and distributed back up to the bot which answers the users request.

Following sequence diagram further illustrates that:

Interim Report to the Team Project WS 2019/20 | Zwischenbericht zum Masterprojekt WS 2019/20

Seite 3 / 12 https://ds-maximum.de

Bot

Bot

Gateway

Gateway

nlp

nlp

Registry

Registry

Service

Service

request

request

request<message>

request<message>

request<message>

response

response

response (text)

response (audio)

response (text|audio)

Bot

This is an abstraction for the available chatbots, e.g. a Bot for Telegram and another Bot for
WhatsApp.

The user interacts with this Microservice, here she can request information and gets answers
from BeuthBot.

Gateway

The Gateway is the centerpiece of BeuthBot one could say.

The Bot notifies the Gateway with the message it got from the user.

The Gateway then uses NLP (Natural Language Processing) Microservices to get the meaning
and intention of the user. Here we try to extract what the user wants from BeuthBot, to notify
the right service and present a fitting answer to our user.

Registry

After obtaining the intention of our user, the Gateway notifies the Registry, to get the
information the user requested.

The Registry distributes the request to the correct Service, that takes care of retrieving the right
informations.

Interim Report to the Team Project WS 2019/20 | Zwischenbericht zum Masterprojekt WS 2019/20

Seite 4 / 12

Service

Service is an abstraction for the implemented Microservices that retrieve the necessary data we
need to answer users requests. E.g. the MensaService is a Microservice that can give
informations about the current menu, filtered by a number of parameters, e.g. a vegan user.

API

Because of the complexity of the single Microservices, every single Microservice implements its
own, distinct, API.

But to answer a users request we use a unified, comprehensive API. Its basic idea is to pass a
Response-Object trough the individual Microservices, which consists of the initial request, an
answer as a response to the users request and informations about the user.

Following class diagram further illustrates that:

Request

platform
userId
message: Message
history: Trace
metadata: KeyValueStore
answer(): Response

Message

id: unique
evaluated: Meaning
evaluate()

Response

request: Request
answer
history: Trace

TextMessage

content

AudioMessage

url

Interim Report to the Team Project WS 2019/20 | Zwischenbericht zum Masterprojekt WS 2019/20

Seite 5 / 12 https://ds-maximum.de

Requirement Analysis BeuthBot

Functional requirements

/F100/ The system must allow the user to enter requests by text or language
/F101/ The system should be able to learn from errors from incoming messages
/F102/ The system must understand user input
/F103/ The system must be able to respond contextually to user input
/F104/ The system must persist messages in a database anonymously
/F105/ The system must be able to persist and retrieve specified preferences for users
/F200/ The system must be able to retrieve the Beuth Mensa menu for a specific day from the
OpenMensa API
/F201/ The system must be able to forward the menu from the OpenMensa API
/F202/ The system must be able to filter and probe the menu according to the user's
specifications
/F203/ The system must be able to cache the food plan

/F300/ The system must be able to access the learning rooms of Beuth University of Applied
Sciences Berlin
/F301/ The system must be able to forward where the learning rooms are located.

/F400/ System must be able to remind user of appointments
/F401/ The system must have access to the user's appointment calendar

/F500/ The system must be able to call up the opening hours of the Beuth University buildings.
/F501/ The system must be able to cache opening hours

/F600/ The system must be able to retrieve the current weather for Berlin via a Weather API
/F601/ The system must be able to forward the current weather
/F602/ The system must be able to cache the current weather

/F700/ The system must be able to call up the examination dates for exams at the Beuth
University for Applied Sciences
/F701/ The system must be able to forward the test dates
/F702/ The system must be able to filter and probe the examination dates according to user
specifications
/F703/ The system must be able to cache the test dates

/F800/ The system must be able to call up the winding rooms at the Beuth University for
Applied Sciences.
/F801/ The system must be able to forward where the winding rooms are located.
/F802/ The system must be able to cache the winding rooms

Non-functional requirements

/NF100/ The system must respond to a message within 3 seconds
/NF101/ The system must retrieve data from the microservices within a few milliseconds
/NF102/ The system must be able to process and evaluate a message within 1.5 seconds
/NF103/ The system must have enough memory for persistence of data from ~13k students

https://openmensa.org
https://openweathermap.org

Interim Report to the Team Project WS 2019/20 | Zwischenbericht zum Masterprojekt WS 2019/20

Seite 6 / 12

/NF200/ Service downtime (NLP component, microservices, gateway) should be less than 1%
/NF201/ ref. /NF100/
/NF202/ ref. /NF101/
/NF203/ ref. /NF102/
/NF204/ Database downtime should be less than 1%

/NF300/ The system should be as modular as possible
/NF301/ The system should be easily scalable
/NF302/ The system should contain easily replaceable components
/NF303/ The system should store understandable error messages

/NF400/ The system should be easily portable to other systems

/NF500/ The system should comply with DSGVO guidelines
/NF501/ The system should be based on security standards
/NF502/ Databases should be protected from unwanted access
/NF503/ The databases should be password protected
/NF504/ The databases should be based on security standards

/NF600/ The system should restart the service independently in the event of a service failure

/NF700/ The system should be well documented
/NF701/ The system should be easy to understand

Use cases

In the following we present three usecases in detail, which exemplarily describe our functional
requirements.

Use case /F103/

Title: Responding to user input

Short description: User sends a message to the chatbot via text or speech and the bot replies
to it.

Actor: User

Preconditions: The chatbot, NLP component, gateway, registry and microservices are running

Basic flow: The user writes a message to the bot via telegram. This message is processed and
evaluated by the NLP component, then the message, including the evaluation of the NLP
component, is persisted in the database and forwarded to a corresponding microservice, which
then generates a response and sends it back.

Effects: The user gets a reply from the chatbot, which refers to his message.

Interim Report to the Team Project WS 2019/20 | Zwischenbericht zum Masterprojekt WS 2019/20

Seite 7 / 12 https://ds-maximum.de

Use case /F200/

Title: User asks for today's menu of the mensa

Short description: User sends a request to the chatbot that he would like to know what there
is to eat in the mensa today.

Actor: User

Preconditions: The chatbot, the NLP component, the Mensa micro service, the gateway and
the registry are running.

Basic flow: The user writes a message to the bot via telegram. The NLP component recognizes
that the user wants to have today's menu of the mensa. The evaluated message is forwarded to
the mensa microservice. The microservice reads out what is required and asks the OpenMensa
API for the mensaplan for the Beuth University of Applied Sciences. An answer is generated
from the object which the microservice receives from the API and sent back to the user.

Effects: The user gets an answer from the chatbot containing today's menu of the mensa.

Use case /F300/

Title: Output learning spaces

Short description: The user wants to know which learning rooms there are and where they
are, the chatbot gives him the information.

Actor: User

Preconditions: The chatbot, NLP component, gateway, registry, and learning room service are
running.

Basic flow: User writes to the chatbot that he wants to know which learning rooms there are.
The system processes the message and forwards it to the learning room microservice. If the
learning rooms have not yet been cached, the service uses web scraping to search for the
required information on the corresponding website, generates a response from it and sends it to
the user.

Effects: The user receives an answer from the chatbot containing the required information.

Interim Report to the Team Project WS 2019/20 | Zwischenbericht zum Masterprojekt WS 2019/20

Seite 8 / 12

Bot Documentation

Telegram Bot build for the BeuthBot-Project, with easy extensibility and customization in
mind.

Bla bla

Table of content

Bot Documentationa.
Table Of Contentb.
Getting Startedc.

PrerequisitesI.
InstallingII.

Overview4.
Structure5.
Functionalities6.

User RequestsI.
CommandsII.
FunctionsIII.
BotFatherIV.

Further Development7.
Further Reading8.
Prerequisites9.
Versioning10.
Authors11.

Getting Started

These instructions will get you a copy of the project up and running on your local machine
for development and testing purposes.

Prerequisites

You will need a current version of node & npm.

Installing

After cloning the repository, install the dependencies. You can then run the project.

install dependencies
> npm install

serve at localhost:8000
> npm start

https://telegram.org/
https://nodejs.org/en/

Interim Report to the Team Project WS 2019/20 | Zwischenbericht zum Masterprojekt WS 2019/20

Seite 9 / 12 https://ds-maximum.de

Overview

The bot is basically a Node-Express-Backend. Incoming requests are checked and
specifically handled.

Structure

The bot is separated into two files. index.js contains the fundamental logic. The bot get
created with its token and waits for incoming events. For example an incoming message.
The bot then calls a handler function.

These handlers can be found in the second file, commands.js. This file contains the
available commands as an Object. Furthermore does ist contain functions to determine if
a message contains a commands and to answer the several requests a user can make.

Functionalities

User Requests

The bot supports three different kinds of user requests:

- Message: A user sends a message to the bot. We then check if the message contains a
command. Commands are declared with a prefixed '/' in Telegram.

- Callback Queries: The bot can answer with a question, providing the user a simple
interface, using a button matrix. When the user clicks on of these buttons we get a
callback query.

- Inline Queries: Users can call our bot from within another chat by prefixing the
botname with an '@'. The user can then send a text to the bot, which results in an inline
query. The result that the bot gives back is inserted in the chat, where the user called the
bot from.

Commands

The commands.js-file contains an commands-object. Every entry of this object is a
supported command. The Key is always the command string, prefixed with '/', eg: '/help'.
The value for these keys is an object containing an description, and options object and
the reference to the function that renders the answer for the specific command.

const commands = {
 '/help': {
 answer: renderHelpString,
 description: 'Get a helpful list of all available commands
and functionalities',
 options: {

Interim Report to the Team Project WS 2019/20 | Zwischenbericht zum Masterprojekt WS 2019/20

Seite 10 / 12

 parse_mode: 'Markdown'
 }
 },
 '/date': {
 answer: (message => 'What date format do you prefer?'),
 description: 'Get the current timestamp in a chooseable
format',
 options: {
 parse_mode: 'Markdown',
 reply_markup: {
 // this initiates a callback query
 // by giving the user two buttons to answer with
 inline_keyboard: [
 [
 {
 text: 'Zulu',
 callback_data: JSON.stringify({
 command: 'date',
 payload: 'zulu'
 })
 },
 {
 text: 'German',
 callback_data: JSON.stringify({
 command: 'date',
 payload: 'german'
 })
 }
]
]
 }
 }
 }
}

Functions

The 'commands.js'-file provides several functions. Eg. functions to check if a message
contains an command and to find out if the requested command is in the 'commands'-
object, which means it is an supported command.

Further are functions provided to handle Messages (containing normal Commands),
Callback Queries and Inline Queries.

The bot has the following functionalities, that a user can request and use:

- getTimestamp: Get the timestamp of the moment the message containing this
command was send.
- getFormatedTimestamp: Renders the timestamp in Zulu or German format, this is a
function used to answer a Callback Query.

Interim Report to the Team Project WS 2019/20 | Zwischenbericht zum Masterprojekt WS 2019/20

Seite 11 / 12 https://ds-maximum.de

- renderHelpString: Iterates over the commands-object and prints all available commands
and there description.
- supportedMarkdown: This function gives the User a list of supported Markdown markup
by Telegram.

BotFather

The BotFather allows so configure our bot. You can just write the BotFather with Telegram
and the bot will guide you through everything. The BotFather enables you among others
to change the profile picture, description and about text of your bot.

Further you can register the commands and inline queries your bot supports. This allows a
cleaner user experience since the bot will then suggest commands and inline queries
while the user types. So absolutely do register them!

The neccessary commands are:

- '/setcommands' - '/setinline'

Further Development

New commands can simply added to the 'commands'-object but have to follow the
presented structure under commands.

Further Reading

- Telegram Bot API

Built With

- Node.js
- Express.js
- Node-Telegram-Bot-API

Versioning

We use SemVer for versioning. For the versions available, see the tags on this repository.

Authors

- Tobias Klatt - Initial work - GitHub

See also the list of contributors who participated in this project.

https://markdown.de/
https://core.telegram.org/bots
https://core.telegram.org/bots/api
https://nodejs.org/en/
https://expressjs.com/
https://github.com/yagop/node-telegram-bot-api
http://semver.org/
https://github.com/beuthbot/telegram-bot/tags
https://github.com/T0biWan/
https://github.com/beuthbot/telegram-bot/graphs/contributors

Interim Report to the Team Project WS 2019/20 | Zwischenbericht zum Masterprojekt WS 2019/20

Seite 12 / 12

Nutzungshinweis: Auf dieses vorliegende Schulungs- oder Beratungsdokument (ggf.)
erlangt der Mandant vertragsgemäß ein nicht ausschließliches, dauerhaftes,
unbeschränktes, unwiderrufliches und nicht übertragbares Nutzungsrecht. Eine
hierüber hinausgehende, nicht zuvor durch datenschutz-maximum bewilligte Nutzung
ist verboten und wird urheberrechtlich verfolgt.

	[Interim Report to the Master Project WS 2019/20 | Zwischenbericht zum Masterprojekt WS 2019/20]
	Interim Report to the Master Project WS 2019/20 | Zwischenbericht zum Masterprojekt WS 2019/20
	Introduction / Summary
	Motivation
	Target group
	Scope

	Software Architecture
	Table of content
	Overview
	Basic Structure
	Bot
	Gateway
	Registry
	Service

	API

	Requirement Analysis BeuthBot
	Functional requirements
	Non-functional requirements
	Use cases
	Use case /F103/
	Use case /F200/
	Use case /F300/

	Bot Documentation
	Table of content
	Getting Started
	Prerequisites
	Installing

	Overview
	Structure
	Functionalities
	User Requests
	Commands
	Functions
	BotFather

	Further Development
	Further Reading
	Built With
	Versioning
	Authors

