
 datenschutz-maximum Version 11.12.2019 11:23, Seite 1 / 8

https://wiki.ziemers.de/wiki/software/beuthbot/berichte/ws2019/zwischen?rev=1576059811 Gedruckt 03.08.2025 10:48

Zwischenbericht zum Masterprojekt WS 2019/20

Durch die folgende Zeile (siehe im Markdown) werden andere Wiki-Seiten in diese inkludiert.

Introduction / Summary

Motivation

A large number of companies are renewing their customer service in order to quickly bring their range
of offers to potential buyers. Digitalization is a useful tool for bringing information to interested
parties. The chatbot plays an important role here. Chatbots are dialogue systems that communicate
via voice or text messages. Chatbots are used in various areas and present a variety of offers to
inform users. There are also other categories, such as chatbots, which provide specific information
about the weather. The Beuth University of Applied Sciences in Berlin offers its students, employees,
scientific staff and teachers various services. The focus is on important questions such as when the
opening hours of Beuth University are. For students, the opening hours of the library, the study
administration, the dean's offices, the study and recreation rooms are also important. For these
reasons Professor Thomas Ziemer proposes to develop a chatbot for the university.

Target group

The chatbot is aimed primarily at students, teachers and visitors to Beuth University. It helps the
above mentioned groups to quickly get information about the learning rooms, Mensaplan and other
services of the university. The chatbot also provides information about the weather.

Scope

Beuth University has an interest in offering a service that leads through the university. This service is
intended to help new students find their way around Beuth University. This includes, among other
things, that students have knowledge of exam dates and the teaching staff's consultation hours in
order to better organize their studies. The chatbot also answers questions about the Mensaplan. The
Mensa's offer is varied, e.g. the Chatbot answers to inquiries, when there is vegetarian or vegan food.
It has other functions as well: So it can answer questions about the next week's menu and can
consider hints from users, such as the request of a vegetarian.

Interim Report to the Team Project WS 2019/20 | Zwischenbericht zum Masterprojekt WS 2019/20

Seite 2 / 8

Software Architecture

Table of content

Table of content1.
Overview2.
Basic Structure3.

Bota.
Gatewayb.
Registryc.
Serviced.

API4.

Overview

BeuthBot consists of many interwoven Microservices. Evey Microservice uses our basic API to
communicate with other Microservices. This approach enables us to change parts of the system
easily at any time or to introduce new Microservices, all they need to do is to implement our
API.

Basic Structure

Our application is basically composed of the following four components.

Bot ⇔ Gateway ⇔ Registry ⇔ Service

Following diagram shows that in more detail:

nlp

rasa-ai droolsGoogle Cloud Speech API Google Cloud Natural Language Microsoft Azure Spracherkennungs-API Microsoft Azure Textanalyse-API

Bot

TelegramBot TwitterBot Gateway

MetaMetaPersistence

MetaPersistence

Registry

Service

MensaService WetterService

1..*

1

1

1

*

A user can write the Bot to request informations, the meaning of the message is extracted and
a fitting Microservice is choosen to retrieve the necessary data. A response is build from that
data and distributed back up to the bot which answers the users request.

Following sequence diagram further illustrates that:

Interim Report to the Team Project WS 2019/20 | Zwischenbericht zum Masterprojekt WS 2019/20

Seite 3 / 8 https://ds-maximum.de

Bot

Bot

Gateway

Gateway

nlp

nlp

Registry

Registry

Service

Service

request

request

request<message>

request<message>

request<message>

response

response

response (text)

response (audio)

response (text|audio)

Bot

This is an abstraction for the available chatbots, e.g. a Bot for Telegram and another Bot for
WhatsApp.

The user interacts with this Microservice, here she can request information and gets answers
from BeuthBot.

Gateway

The Gateway is the centerpiece of BeuthBot one could say.

The Bot notifies the Gateway with the message it got from the user.

The Gateway then uses NLP (Natural Language Processing) Microservices to get the meaning
and intention of the user. Here we try to extract what the user wants from BeuthBot, to notify
the right service and present a fitting answer to our user.

Registry

After obtaining the intention of our user, the Gateway notifies the Registry, to get the
information the user requested.

The Registry distributes the request to the correct Service, that takes care of retrieving the right
informations.

Interim Report to the Team Project WS 2019/20 | Zwischenbericht zum Masterprojekt WS 2019/20

Seite 4 / 8

Service

Service is an abstraction for the implemented Microservices that retrieve the necessary data we
need to answer users requests. E.g. the MensaService is a Microservice that can give
informations about the current menu, filtered by a number of parameters, e.g. a vegan user.

API

Because of the complexity of the single Microservices, every single Microservice implements its
own, distinct, API.

But to answer a users request we use a unified, comprehensive API. Its basic idea is to pass a
Response-Object trough the individual Microservices, which consists of the initial request, an
answer as a response to the users request and informations about the user.

Following class diagram further illustrates that:

Request

platform
userId
message: Message
history: Trace
metadata: KeyValueStore
answer(): Response

Message

id: unique
evaluated: Meaning
evaluate()

Response

request: Request
answer
history: Trace

TextMessage

content

AudioMessage

url

Interim Report to the Team Project WS 2019/20 | Zwischenbericht zum Masterprojekt WS 2019/20

Seite 5 / 8 https://ds-maximum.de

Requirement Analysis BeuthBot

Functional requirements

/F100/ The system must allow the user to enter requests by text or language
/F101/ The system should be able to learn from errors from incoming messages
/F102/ The system must understand user input
/F103/ The system must be able to respond contextually to user input
/F104/ The system must persist messages in a database anonymously
/F105/ The system must be able to persist and retrieve specified preferences for users
/F200/ The system must be able to retrieve the Beuth Mensa menu for a specific day from the
OpenMensa API
/F201/ The system must be able to forward the menu from the OpenMensa API
/F202/ The system must be able to filter and probe the menu according to the user's
specifications
/F203/ The system must be able to cache the food plan

/F300/ The system must be able to access the learning rooms of Beuth University of Applied
Sciences Berlin
/F301/ The system must be able to forward where the learning rooms are located.

/F400/ System must be able to remind user of appointments
/F401/ The system must have access to the user's appointment calendar

/F500/ The system must be able to call up the opening hours of the Beuth University buildings.
/F501/ The system must be able to cache opening hours

/F600/ The system must be able to retrieve the current weather for Berlin via a Weather API
/F601/ The system must be able to forward the current weather
/F602/ The system must be able to cache the current weather

/F700/ The system must be able to call up the examination dates for exams at the Beuth
University for Applied Sciences
/F701/ The system must be able to forward the test dates
/F702/ The system must be able to filter and probe the examination dates according to user
specifications
/F703/ The system must be able to cache the test dates

/F800/ The system must be able to call up the winding rooms at the Beuth University for
Applied Sciences.
/F801/ The system must be able to forward where the winding rooms are located.
/F802/ The system must be able to cache the winding rooms

Non-functional requirements

/NF100/ The system must respond to a message within 3 seconds
/NF101/ The system must retrieve data from the microservices within a few milliseconds
/NF102/ The system must be able to process and evaluate a message within 1.5 seconds
/NF103/ The system must have enough memory for persistence of data from ~13k students

https://openmensa.org
https://openweathermap.org

Interim Report to the Team Project WS 2019/20 | Zwischenbericht zum Masterprojekt WS 2019/20

Seite 6 / 8

/NF200/ Service downtime (NLP component, microservices, gateway) should be less than 1%
/NF201/ ref. /NF100/
/NF202/ ref. /NF101/
/NF203/ ref. /NF102/
/NF204/ Database downtime should be less than 1%

/NF300/ The system should be as modular as possible
/NF301/ The system should be easily scalable
/NF302/ The system should contain easily replaceable components
/NF303/ The system should store understandable error messages

/NF400/ The system should be easily portable to other systems

/NF500/ The system should comply with DSGVO guidelines
/NF501/ The system should be based on security standards
/NF502/ Databases should be protected from unwanted access
/NF503/ The databases should be password protected
/NF504/ The databases should be based on security standards

/NF600/ The system should restart the service independently in the event of a service failure

/NF700/ The system should be well documented
/NF701/ The system should be easy to understand

Use cases

In the following we present three usecases in detail, which exemplarily describe our functional
requirements.

Use case /F103/

Title: Responding to user input

Short description: User sends a message to the chatbot via text or speech and the bot replies
to it.

Actor: User

Preconditions: The chatbot, NLP component, gateway, registry and microservices are running

Basic flow: The user writes a message to the bot via telegram. This message is processed and
evaluated by the NLP component, then the message, including the evaluation of the NLP
component, is persisted in the database and forwarded to a corresponding microservice, which
then generates a response and sends it back.

Effects: The user gets a reply from the chatbot, which refers to his message.

Interim Report to the Team Project WS 2019/20 | Zwischenbericht zum Masterprojekt WS 2019/20

Seite 7 / 8 https://ds-maximum.de

Use case /F200/

Title: User asks for today's menu of the mensa

Short description: User sends a request to the chatbot that he would like to know what there
is to eat in the mensa today.

Actor: User

Preconditions: The chatbot, the NLP component, the Mensa micro service, the gateway and
the registry are running.

Basic flow: The user writes a message to the bot via telegram. The NLP component recognizes
that the user wants to have today's menu of the mensa. The evaluated message is forwarded to
the mensa microservice. The microservice reads out what is required and asks the OpenMensa
API for the mensaplan for the Beuth University of Applied Sciences. An answer is generated
from the object which the microservice receives from the API and sent back to the user.

Effects: The user gets an answer from the chatbot containing today's menu of the mensa.

Use case /F300/

Title: Output learning spaces

Short description: The user wants to know which learning rooms there are and where they
are, the chatbot gives him the information.

Actor: User

Preconditions: The chatbot, NLP component, gateway, registry, and learning room service are
running.

Basic flow: User writes to the chatbot that he wants to know which learning rooms there are.
The system processes the message and forwards it to the learning room microservice. If the
learning rooms have not yet been cached, the service uses web scraping to search for the
required information on the corresponding website, generates a response from it and sends it to
the user.

Effects: The user receives an answer from the chatbot containing the required information.

Interim Report to the Team Project WS 2019/20 | Zwischenbericht zum Masterprojekt WS 2019/20

Seite 8 / 8

Nutzungshinweis: Auf dieses vorliegende Schulungs- oder Beratungsdokument (ggf.) erlangt
der Mandant vertragsgemäß ein nicht ausschließliches, dauerhaftes, unbeschränktes,
unwiderrufliches und nicht übertragbares Nutzungsrecht. Eine hierüber hinausgehende, nicht
zuvor durch datenschutz-maximum bewilligte Nutzung ist verboten und wird urheberrechtlich
verfolgt.

	[Zwischenbericht zum Masterprojekt WS 2019/20]
	Zwischenbericht zum Masterprojekt WS 2019/20
	Introduction / Summary
	Motivation
	Target group
	Scope

	Software Architecture
	Table of content
	Overview
	Basic Structure
	Bot
	Gateway
	Registry
	Service

	API

	Requirement Analysis BeuthBot
	Functional requirements
	Non-functional requirements
	Use cases
	Use case /F103/
	Use case /F200/
	Use case /F300/

