
 datenschutz-maximum Version 04.06.2020 12:23, Seite 1 / 14

https://wiki.ziemers.de/wiki/software/beuthbot/berichte/ss2020/zwischen?rev=1591266211 Gedruckt 01.02.2026 10:50

Zwischenbericht SS2020

BeuthBot Project Group

Tobias Belkner
Lukas Danckwerth
Jan Fromme
Denny Schumann

Übersicht (Fragen, die beantwortet werden sollten)

Was haben wir vorgefunden?

Es wurden verschieden Github Projekte wie, Telegram Bot, Gateway, Deconcentrator, Rasa, Registry,
Weather, Scraper(Öffnungszeiten) und Mensa vorgefunden. Jedes dieser Projekte besaß seine eigene
docker-compose.yml file. Die in jedem Projekt vorgefundenen .env Dateien waren wie zu erwarten
leer, leider wurde in der Dokumentation nicht beschrieben wie diese zu befüllen sind. Zudem
existierte ein Token, welcher für den Telegram Bot benötigt wurde. Ebenso konnte der Bot nicht
vollständig ausgeführt werden, da der Service Deconcentrator fehlerhaft war. Auch konnte die
virtuelle Maschine, welche zur verfügung gestellt wurde nicht standart gemäß ausgeführt werden.
Leider wies die Dokumentation einige Lücken, im bezug auf das starten des Bots auf, wodurch es zu
vielen Selbstrechergen und verzögerungen kam. Auch fehlte die Zugangsberechtigung des Servers,
auf dem der Bot lief, da es ein “privater” Server eines Studenten gewesen war.

NLU

Services

rasa

weathermensa scraper

User

telgram-bot gateway

deconcentrator

registry

Was haben wir gemacht?

Es wurde anfangs versucht alle Docker-Container der einzelnen Services des Bots lokal zu starten.
Dabei musste erst einmal herausgefunden werden welche URLs bzw. welcher Token zu benutzen war.

Zwischenbericht SS2020

Seite 2 / 14

Da wir keinen Token in der bereits vorhandenen Dokumentation finden konnten bzw. es keinen
hinterlegten gab, wurden übergangsweise mehrere Test-Tokens mit BotFather erstellt. Ebenso wurde
versucht die Container sowohl auf Windows, also auch auf Linux zu starten. Daraufhin wurde versucht
das Image des Beuth Bots auf einer virtuellen Maschine zu starten. Um dies ausführen zu können
musste Anfangs erst einmal die Datei mit lz4 dekomprimiert werden. Dafür musste erst einmal das
Github lz4(https://github.com/lz4/lz4) gedownloadet und ausgeführt werden, welches einige Zeit in
Anspruch nahm. Danach wurde die kvm Datei mit qemu zu einer vdi Datei konvertiert, damit
VirtuelBox diese Datei akzeptiert. Nach dem erfolgreichen starten der virtuellen Maschine gab es das
Problem, dass das Passwort nicht richtig war, welches uns gegeben wurde. Letztendlich musste dies
mit folgenden Codezeilen umgangen werden:

mount -o remount,rw /
passwd
passwort eurer wahl eingeben
oder, müsste auch gehen:
passwd --delete
mount -o remount,ro /

Nun wurde der Beuth Bot gestartet, konnte allerdings nicht in Betrieb genommen werden, da dieser
keine Netzwerkverbindung nach draußen hatte. Daraufhin wurde uns ein Server auf der Beuth zur
verfügung gestellt, auf welchem der Beuth Bot letztendlich laufen sollte. Nachdem dieser dort
versucht wurde eingerichtet zu werden, fehlte es dem Server an zugewiesenem Speicher, was erst
behoben werden musste um den Bot vollständig installieren und in Betrieb nehmen zu können. Es
konnten nach der Behebung des fehlenden Speichers letztendlich fast alle Docker-Container
erfolgreich gestartet werden, bis auf den Service Deconcentrator, welcher sich erst nicht richtig
starten ließ und als er lief nicht funktionierte. Nach mehreren Wochen der Versuche diesen Service
zum laufen zu bekommen entschieden wir uns in Absprache mit Herrn Ziemer diesen zu verwerfen
und einen neuen Deconcentrator zu schreiben.

Wo stehen wir gerade?

Aktuell Ist der Beuth Bot vollständig in Betrieb genommen, dank des neu geschriebenen
Deconcentrators. Ebenso liegt dieser nun, auf einem für uns zugreifbaren Server, welcher dort
erfolgreich in Betrieb genommen wurde. Auch wurde er nun ermöglicht den gesamten Bot, welcher 8
Services beinhaltet mit zwei docker-compose files zu starten. Das Projekt wurde nun in 2 Git
Submodule unterteilt, welche in Zukunft leichter bearbeitet werden können. Ebenfalls wurden sowohl
in diesem Semester zu bearbeitende, also auch zukünftige Projektideen erschlossen. Die
Arbeitsteilung der einzelnen Gruppenmitglieder wurde durchgeführt und ein Zwischenbericht wurde
angelegt.

was werden wir tun?

Challenges / Barriers

Complex Project Structure
Bad documentation of final state. So we …
Focused to long on the image of virtual machine
Bad documentation of JSON format of messages
Running out of space on Virtual Machine

https://github.com/lz4/lz4

Zwischenbericht SS2020

Seite 3 / 14 https://ds-maximum.de

Current Situation with the Corona Virus

Needs For Action

Complete Documentation
„Kick out“ the `deconcentrator` and `scraper`
Create a master project containing the packages as submodules

Done so far

Model of Messages of Telegram Bot

Message

message_id: Integer
from: User
chat: Chat
date: Long
text: String

User

id: Integer
is_bot: Boolean
first_name: String
username: String
language_code: String

Chat

id: Integer
first_name: String
username: String
type: String

BeuthBot Project (One Git Repository)

https://github.com/beuthbot/beuthbot

Motivation

Fulfilling the following requirements (Link, Section: 'Requirement Analysis BeuthBot') `/NF300/`,
`/NF301/`, `/NF302/`, `/NF400/` it's obvious to have the BeuthBot splitted up into many (small)
repositories. Especially when having the requirements to have the project as modular as possible and
to have the project easy extendable.

https://github.com/beuthbot/beuthbot
https://wiki.ziemers.de/doku.php?id=wiki:software:beuthbot:berichte:ws2019:zwischen

Zwischenbericht SS2020

Seite 4 / 14

BeuthBot's structure before this repository:

rasa deconcentrator-js gateway

weather mensa registry

But when deploying on a (productive) machine we faced the problem cloning at least a half-dozen
repositories, editing the `.env` files of these projects and invoking each `docker-compose.yml`
individually. This means at least typing in the following commands six times:

clone repository
$ git clone https://github.com/beuthbot/$PROJECT_NAME.git

change into directory
$ cd $PROJECT_NAME

edit environment file
$ cp .env.sample .env && vim .env

start project
$ docker-compose up -d

Not even for us this is / was a huge workload before starting development and / or when deploying
the project. Facing this problem we started writing bash scripts updating and editing these projects.
But in the end that didn't felt right so we decided having a master project (this repository) containing
and combing the packages of the BeuthBot and making it possible running the whole system with one
`.env` and one `docker-compose.yml` file.

We did not remove the `docker-compose.yml` files of the components in order to have the option
to start all services seperatly.

BeuthBot's structure with this repository:

Zwischenbericht SS2020

Seite 5 / 14 https://ds-maximum.de

BeuthBot

rasa

deconcentrator-js

gateway

weather

mensa

registry

With this repository it became way easier to manage, develope and deploy the BeuthBot. The
following collection of commands which can be used to fully deploy the BeuthBot demonstrates that.
Note the `–recursive` argument for the git `clone` command which make git fetching the
submodules, too. Have a look at the section [Working with Submodules](#Working-with-Submodules)
for further information about working with submodules.

clone project
$ git clone --recursive https://github.com/beuthbot/beuthbot.git

change into directory
$ cd beuthbot

edit environment file
$ cp .env.sample .env && vim .env

start BeuthBot
$ docker-compose up -d

Having this project organized with submodules makes it also easier to have and organize multiple
distributions of this project. It further allows us having a global state / version of the BeuthBot.

Default Ports of Services

Service External Port Internal Port

gateway 3000 3000

deconcentrator-js 8338 8338

rasa 5005 5005

registry 9922 3000

mensa 9950 8000

weather 9951 7000

https://github.com/beuthbot/gateway
https://github.com/beuthbot/deconcentrator-js
https://github.com/beuthbot/rasa
https://github.com/beuthbot/registry
https://github.com/beuthbot/mensa
https://github.com/beuthbot/weather

Zwischenbericht SS2020

Seite 6 / 14

Packages / Submodules

Packagename About Language

gateway Receives messages from bot clients via a API. JS

deconcentrator-js Asks multiple NLU processors for the interpretation of a given message JS

rasa NLU Python

registry The registry of services. It knows all existing services and handles the
requests against these services.

JS

mensa The mensa service of the BeuthBot. It knows whether the Mensa is
open or closed.

JS

weather The weather service. JS

Other Packages

Packagename About Language

.documentation Contains mostly text, image and markdown files with information and
documentation about this repository.

-

scripts Contains scripts to automate tasks. BASH

deconcentrator-js

https://github.com/beuthbot/deconcentrator-js

Model of an incoming message.

Message

text: String
min_confidence_score: Float
processors: Array<String>

Model of an answer from deconcentrator.

https://github.com/beuthbot/gateway
https://github.com/beuthbot/deconcentrator-js
https://github.com/beuthbot/rasa
https://github.com/beuthbot/registry
https://github.com/beuthbot/mensa
https://github.com/beuthbot/weather
https://github.com/beuthbot/deconcentrator-js

Zwischenbericht SS2020

Seite 7 / 14 https://ds-maximum.de

Answer

text: String
intent: Intent
entities: Array<Entity>
text: String

Intent

name: String
confidence: Float

Entity

start: Int
end: Int
text: String
value: String
confidence: Float
additional_info: AdditionalInfo
entity: String

AdditionalInfo

value: String
grain: String
type: String
values: Dictionary<String, Any>

Deploying on Virtual Machine

Install BeuthBot on a virtual machine:

clone project
$ git clone https://github.com/beuthbot/beuthbot.git

change into directory
$ cd beuthbot

initialize submodules
$ git submodule init

clone all submodules
$ git submodule update

Zwischenbericht SS2020

Seite 8 / 14

edit environment file
$ vim .env

start BeuthBot
$ docker-compose up -d

Install Telegram Bot on a virtual machine:

clone with HTTPS
$ git clone https://github.com/beuthbot/telegram-bot.git

change into directory
$ cd telegram-bot

edit environment file
$ vim .env

start Telegram Bot
$ docker-compose up -d

Current output of `docker ps` on virtual machine:

CONTAINER ID IMAGE COMMAND
CREATED STATUS PORTS
NAMES
881848bfaa3c beuthbot_gateway "docker-entrypoint.s…" 55
minutes ago Up 54 minutes 0.0.0.0:3000->3000/tcp
beuthbot_gateway_1
c5ef1f78da2f beuthbot_deconcentrator "docker-entrypoint.s…" 55
minutes ago Up 55 minutes 0.0.0.0:8338->8338/tcp
beuthbot_deconcentrator_1
992d5ed6d94b beuthbot_registry "docker-entrypoint.s…" 55
minutes ago Up 55 minutes 0.0.0.0:9922->3000/tcp
beuthbot_registry_1
62e0bf7e2c8d rasa/rasa:1.6.0-spacy-de "rasa run --enable-a…" 55
minutes ago Up 55 minutes 0.0.0.0:5005->5005/tcp
beuthbot_rasa_1
b33f342d24fd beuthbot_weather "docker-entrypoint.s…" 55
minutes ago Up 55 minutes 8000/tcp, 0.0.0.0:9951->7000/tcp
beuthbot_weather_1
8beba8a324e8 beuthbot_mensa "docker-entrypoint.s…" 55
minutes ago Up 55 minutes 0.0.0.0:9950->8000/tcp
beuthbot_mensa_1
75b7b5653577 telegram-bot_telegram-bot "docker-entrypoint.s…" 2
hours ago Up 2 hours
telegram-bot_telegram-bot_1
7d9e26988632 rasa/duckling:0.1.6.2 "duckling-example-ex…" 24
hours ago Up 24 hours 0.0.0.0:8000->8000/tcp
beuthbot_duckling_1

Zwischenbericht SS2020

Seite 9 / 14 https://ds-maximum.de

Requirements

Persistence

Damit der Benutzer sich selbst nicht ständig wiederholen muss, wird ihm die Möglichkeit geboten,
seine Vorlieben zu speichern. Als Datenbank haben wir uns für die MongoDB entschieden.

Cache

Die Motivation hinter dem Cache besteht darin, dass externe API's, wie z.B. die WetterAPI, welche in
dem Beuthbot Projekt benutzt wird, nur begrenzt Zugriffe zulassen. Daher müssen die Anfragen durch
ein Cache begrenzt werden, um wiederholte Anfragen an die API zu limitieren und im Cache
abzulegen. Ein positiver Effekt des Caches wird auch sein, dass Zeit gespart werden kann, weil
unnötige Anfragen an die Services erspart bleiben.

Damit die Anfrage gecached werden kann, muss diese zuvor von dem Deconcentrator interpretiert
werden, um die korrekte Intention hinter dieser Anfrage zu verstehen, da die Anfrage des Benutzers
jedesmal anders formuliert sein könnte. Diese Intention gibt der Registry an, an welchen Microservice
diese Anfrage geschickt werden soll und erhält auch die Antwort des jeweiligen Microservices. Um
doppelte Anfragen in zu kurzer Zeit zu verhindern, ist die optimale Stelle für den Cache bei der
Registry.

subject to change

registry internal

gateway

gateway

registry

registry

cache

cache

microservices

microservices

Intention Request

Cache Lookup

Cache Response

alt [requested resource is not in cache]

Service Request

Service Response

Cache Persist

Final Response

Zwischenbericht SS2020

Seite 10 / 14

Additional Services

Ebenfalls wurden weitere Mirko Service Ideen für denn zukünftigen Beuth Bot entwickelt welche da
wären:

Microservice: Scraper

Dieser Microservice soll ausschließlich von anderen Services, wie beispielsweise Schedule benutzt
werden. Er soll Informationen von Webseiten, wie von der Beuth Website scapen und in eine
Datenbank speichern. Auf diese Daten können letztendlich andere Microservices zugreifen und diese
für ihre Dienste benutzen.

registry

registry

scraper

scraper

websites

websites

request

document request

document response

response

Microservice: PDF Reader

Dieser Service erwertet eine spezielle PDF des jeweiligen Stundenplans des Studenten und gibt den
Inhalt der PDF in einem JSON zurück. Der Service soll später von den Microservices Schedule und
finals benutz werden, welche die Daten weiterverarbeiten.

registry

registry

pdf_reader

pdf_reader

request

response

Microservice: Schedule

Dieser soll dem User die Funktionalität zur Verfügung stellen seinen eigenen Stundenplan erstellen
und diesen auch ändern zu können. Ebenfalls soll der Service den User Notifications senden können,
wie in der folgenden Beispiel Notification: „In 3 Wochen ist in dem Fach xy folgende Abgabe: Abgabe
3“. Dabei werden mehrere Möglichkeiten der Eingabe der Module in Betracht gezogen, wie
Grundlegend das ganz normale manuelle einfügen per Text(Chat Eingabe), aber auch das
Hinzufügen von Modulen über die Module ID. Für das hinzufügen eines Modules über die Modul ID

Zwischenbericht SS2020

Seite 11 / 14 https://ds-maximum.de

wurde überlegt in eine Datenbank alle sich in diesem Semester existierenden Fächer abzuspeichern
und aus diesen Einträgen die Daten der Modul ID abzugleichen. Auch wurde überlegt die PDF, welche
sich jeder Student frei von der Beuth herunterladen kann abzuschicken und den Stundenplan
automatisch anhand der Daten auf der PDF zu generieren. Dabei wird darauf geachtet, dass die PDF
nicht zwischengespeichert wird, sondern nur eingelesen, Übersetzt und aus den Zwischenspeicher
wieder gelöscht wird.

registry

registry

schedule

schedule

db

db

request

request

response

alt [request with module id]

request

response

response

Microservice: finals

Dieser Dienst bietet dem User seine noch ausstehenden Prüfungen einsehen zu können. Dabei soll
der Service das Datum der noch ausstehenden Abgaben bzw. Prüfungen, sowie dessen Fach und
Inhalt wiedergeben. Auch soll dem User ermöglicht werden eigene Abgaben über eine Chat-Funktion
hinzuzufügen, bzw. zu ändern. Die Daten werden einerseits aus dem vom User selbst eingetragenen
Daten ermittelt, aber auch durch einen Scraper, welcher die aktuell eingetragenen Prüfungen des
jeweiligen Faches über die Beuth Website ermittelt. Für das automatische ermitteln der
Prüfungsdaten muss entweder der Studiengang, sowie das Semester und der Zug eingegeben
werden, oder aber der Stundenplan als PDF gesendet werden.

Zwischenbericht SS2020

Seite 12 / 14

registry internal

registry

registry

cache

cache

finals

finals

request

response

request with cache data

response

Goal for end of semester

Current State:

BeuthBot

NLU

Services

gateway

deconcentrator-js

registry

rasa

weathermensa

User

telgram-bot

Target State:

Zwischenbericht SS2020

Seite 13 / 14 https://ds-maximum.de

BeuthBot

Persistence

NLU

Services

gateway

deconcentrator-js

registry

cache

database-containerDB_NAME

rasa

weather mensaNEW_SER_1NEW_SER_2

User

telgram-bot

Timeplan

subject to change

@startuml
project starts the 2020/04/23
[Introductory training & building comprehension] as [IT] lasts 25 days
-- Transitional tasks --
then [Replace Deconcentrator] as [D] lasts 7 days
then [Conflate project] as [C] lasts 4 day

-- Implementation --
[Persist user preferences] as [I1] lasts 30 days and starts 5 days after [C]'s end
[Cache microservices responses] as [I2] lasts 30 days and starts 5 days after [C]'s end
[Transform scraper microservice] as [I3] lasts 30 days and starts 5 days after [C]'s end
[Adjust weather microservice] as [I4] lasts 30 days and starts 5 days after [C]'s end
[New course schedule microservice] as [I5] lasts 30 days and starts 5 days after [C]'s end
[C] -> [I1]
[C] -> [I2]
[C] -> [I3]
[C] -> [I4]
[C] -> [I5]
[I1] is 0% completed
[I2] is 0% completed
[I3] is 0% completed

Zwischenbericht SS2020

Seite 14 / 14

[I4] is 0% completed
[I5] is 0% completed
@enduml

Nutzungshinweis: Auf dieses vorliegende Schulungs- oder Beratungsdokument (ggf.) erlangt der
Mandant vertragsgemäß ein nicht ausschließliches, dauerhaftes, unbeschränktes, unwiderrufliches
und nicht übertragbares Nutzungsrecht. Eine hierüber hinausgehende, nicht zuvor durch
datenschutz-maximum bewilligte Nutzung ist verboten und wird urheberrechtlich verfolgt.

	Zwischenbericht SS2020
	BeuthBot Project Group
	Übersicht (Fragen, die beantwortet werden sollten)
	Was haben wir vorgefunden?
	Was haben wir gemacht?
	Wo stehen wir gerade?

	Challenges / Barriers
	Needs For Action
	Done so far
	Model of Messages of Telegram Bot
	BeuthBot Project (One Git Repository)
	Motivation
	BeuthBot's structure before this repository:
	BeuthBot's structure with this repository:
	Default Ports of Services
	Packages / Submodules
	Other Packages

	deconcentrator-js
	Deploying on Virtual Machine

	Requirements
	Persistence
	Cache
	Additional Services
	Microservice: Scraper
	Microservice: PDF Reader
	Microservice: Schedule
	Microservice: finals

	Goal for end of semester
	Timeplan

