E datenschutz-maximum Version 04.06.2020 15:58, Seite 1/ 20

Zwischenbericht SS2020

BeuthBot Project Group

e Tobias Belkner

e Lukas Danckwerth
e Jan Fromme

e Denny Schumann

Inhaltsangabe

- Einleitung / Aktueller Stand
- BeuthBot-Projekt

- deconcentrator-js

- Virtuellen Machine

- Funktionale Anforderungen

- Persistenz & Cache

- Microservices

- Ausblick

Was haben wir vorgefunden?

Es wurden verschieden Github Projekte wie, Telegram Bot, Gateway, Deconcentrator, Rasa, Registry,
Weather, Scraper(Offnungszeiten) und Mensa vorgefunden. Jedes dieser Projekte besal seine eigene
docker-compose.yml file. Die in jedem Projekt vorgefundenen .env Dateien waren wie zu erwarten
leer, leider wurde in der Dokumentation nicht beschrieben wie diese zu befullen sind. Zudem
existierte ein Token, welcher fur den Telegram Bot bendtigt wurde. Ebenso konnte der Bot nicht
vollstandig ausgeflhrt werden, da der Service Deconcentrator fehlerhaft war. Auch konnte die
virtuelle Maschine, welche zur verfigung gestellt wurde nicht standart gemal$ ausgefuhrt werden.
Leider wies die Dokumentation einige Licken, im bezug auf das starten des Bots auf, wodurch es zu
vielen Selbstrechergen und verzogerungen kam. Auch fehlte die Zugangsberechtigung des Servers,
auf dem der Bot lief, da es ein “privater” Server eines Studenten gewesen war.

Initial Project State

https://wiki.ziemers.de/wiki/software/beuthbot/berichte/ss2020/zwischen Gedruckt 01.02.2026 05:08

Zwischenbericht S52020

User

Services\\ x
Y N
telgram-bot Ej gateway [1 registry Ej mensa weather

NLU

deconcentrator tj rasa

Was haben wir gemacht?

Es wurde anfangs versucht alle Docker-Container der einzelnen Services des Bots lokal zu starten.
Dabei musste erst einmal herausgefunden werden welche URLs bzw. welcher Token zu benutzen war.
Da wir keinen Token in der bereits vorhandenen Dokumentation finden konnten bzw. es keinen
hinterlegten gab, wurden Ubergangsweise mehrere Test-Tokens mit BotFather erstellt. Ebenso wurde
versucht die Container sowohl auf Windows, also auch auf Linux zu starten. Daraufhin wurde versucht
das Image des Beuth Bots auf einer virtuellen Maschine zu starten. Um dies ausfuhren zu kdnnen
musste Anfangs erst einmal die Datei mit 1z4 dekomprimiert werden. Daflr musste erst einmal das
Github 1z4(https://github.com/Iz4/I1z4) gedownloadet und ausgefiuhrt werden, welches einige Zeit in
Anspruch nahm. Danach wurde die kvm Datei mit gemu zu einer vdi Datei konvertiert, damit
VirtuelBox diese Datei akzeptiert. Nach dem erfolgreichen starten der virtuellen Maschine gab es das
Problem, dass das Passwort nicht richtig war, welches uns gegeben wurde. Letztendlich musste dies
mit folgenden Codezeilen umgangen werden:

mount -o remount,rw /

passwd

passwort eurer wahl eingeben
oder, musste auch gehen:
passwd --delete

mount -o remount,ro /

Nun wurde der Beuth Bot gestartet, konnte allerdings nicht in Betrieb genommen werden, da dieser
keine Netzwerkverbindung nach drauRen hatte. Daraufhin wurde uns ein Server auf der Beuth zur
verfugung gestellt, auf welchem der Beuth Bot letztendlich laufen sollte. Nachdem dieser dort
versucht wurde eingerichtet zu werden, fehlte es dem Server an zugewiesenem Speicher, was erst
behoben werden musste um den Bot vollstandig installieren und in Betrieb nehmen zu kénnen. Es
konnten nach der Behebung des fehlenden Speichers letztendlich fast alle Docker-Container
erfolgreich gestartet werden, bis auf den Service Deconcentrator, welcher sich erst nicht richtig
starten liels und als er lief nicht funktionierte. Nach mehreren Wochen der Versuche diesen Service
zum laufen zu bekommen entschieden wir uns in Absprache mit Herrn Ziemer diesen zu verwerfen
und einen neuen Deconcentrator zu schreiben.

Seite 2/ 20

https://github.com/lz4/lz4

Zwischenbericht S52020

Resultierende Aufgaben

e Dokumentation komplettieren / umstruktorieren
e Den alten deconcentrator ,rausschmeissen“ und neuen (deconcentrator-js) schreiben
« Ubergeordnetes Git Projekt erstellen mit Paketen als Submodule

Wo stehen wir gerade?

Aktuell Ist der Beuth Bot vollstandig in Betrieb genommen, dank des neu geschriebenen
Deconcentrators. Ebenso liegt dieser nun, auf einem fur uns zugreifbaren Server, welcher dort
erfolgreich in Betrieb genommen wurde. Auch wurde er nun ermoglicht den gesamten Bot, welcher 8
Services beinhaltet mit zwei docker-compose files zu starten. Das Projekt wurde nun in 2 Git
Submodule unterteilt, welche in Zukunft leichter bearbeitet werden kénnen. Ebenfalls wurden sowohl
in diesem Semester zu bearbeitende, also auch zuklnftige Projektideen erschlossen. Die
Arbeitsteilung der einzelnen Gruppenmitglieder wurde durchgefuhrt und ein Zwischenbericht wurde
angelegt.

Wo werden wir tun?

Zusammengefasst, werden wir den Scraper Microservice fertigstellen und anpassen, eine Persistenz
hinzufugen die es dem System erlaubt Praferenzen vom User zu speichern, den Wetter Microservice
anpassen, einen Cache hinzufigen und zwei neue Microservices namens Schedule (Stundenplan) und
Finals (Prafungen) hinzuftugen.

Auf diese Punkte wird im weiteren Verlauf dieses Dokuments eingegangen.

BeuthBot Project (One Git Repository)

https://github.com/beuthbot/beuthbot

Motivation

Fulfilling the following requirements (Link, Section: 'Requirement Analysis BeuthBot') “/NF300/",
*/NF301/°, */NF302/°, */NF400/" it's obvious to have the BeuthBot splitted up into many (small)
repositories. Especially when having the requirements to have the project as modular as possible and
to have the project easy extendable.

BeuthBot's structure before this repository:

Seite 3/20 https://ds-maximum.de

https://github.com/beuthbot/beuthbot
https://wiki.ziemers.de/doku.php?id=wiki:software:beuthbot:berichte:ws2019:zwischen

Zwischenbericht S52020

g] g] g]
rasa

deconcentrator-js gateway

2] g] g]
weather mensa registry

But when deploying on a (productive) machine we faced the problem cloning at least a half-dozen
repositories, editing the “.env" files of these projects and invoking each “docker-compose.yml®
individually. This means at least typing in the following commands six times:

#
$

“+r

Roas

#
$

clone repository
git clone https://github.com/beuthbot/$PROJECT NAME.git

change into directory
cd $PROJECT NAME

edit environment file
cp .env.sample .env && vim .env

start project
docker-compose up -d

Not even for us this is / was a huge workload before starting development and / or when deploying
the project. Facing this problem we started writing bash scripts updating and editing these projects.
But in the end that didn't felt right so we decided having a master project (this repository) containing
and combing the packages of the BeuthBot and making it possible running the whole system with one
“.env’ and one "docker-compose.yml” file.

We did not remove the “docker-compose.yml” files of the components in order to have the option
to start all services seperatly.

BeuthBot's structure with this repository:

Seite 4 / 20

Zwischenbericht S52020

BeuthBot

gateway

B

deconcentrator-js

B

g]
rasa

registry

mensa

weather

With this repository it became way easier to manage, develope and deploy the BeuthBot. The
following collection of commands which can be used to fully deploy the BeuthBot demonstrates that.
Note the "-recursive’ argument for the git "clone’ command which make git fetching the
submodules, too. Have a look at the section [Working with Submodules](#Working-with-Submodules)

for further information about working with submodules.

clone project
$ git clone --recursive https://github.com/beuthbot/beuthbot.git

+ H

cd beuthbot

change into directory

edit environment file

+

start BeuthBot

“+r

docker-compose up -d

cp .env.sample .env && vim .env

Having this project organized with submodules makes it also easier to have and organize multiple
distributions of this project. It further allows us having a global state / version of the BeuthBot.

Default Ports of Services

Service External Port Internal Port

gateway 3000 3000

deconcentrator-js 8338 8338

rasa 5005 5005

registry 9922 3000

mensa 9950 8000

weather 9951 7000

Seite 5/ 20 https://ds-maximum.de

https://github.com/beuthbot/gateway
https://github.com/beuthbot/deconcentrator-js
https://github.com/beuthbot/rasa
https://github.com/beuthbot/registry
https://github.com/beuthbot/mensa
https://github.com/beuthbot/weather

Zwischenbericht S52020

Packages / Submodules

Packagename About Language
gateway Receives messages from bot clients via a API. JS
deconcentrator-js Asks multiple NLU processors for the interpretation of a given message JS

rasa NLU Python

registry The registry of services. It knows all existing services and handles the |S
requests against these services.

mensa The mensa service of the BeuthBot. It knows whether the Mensa is JS
open or closed.

weather The weather service. JS

Other Packages

Packagename About Language

.documentation Contains mostly text, image and markdown files with information and -
documentation about this repository.

scripts Contains scripts to automate tasks. BASH

deconcentrator-js

https://github.com/beuthbot/deconcentrator-js

The deconcentrator uses different NLU processors to compare their results and tries to choose an best
fitting answer. The NLU processors like RASA must know their domain on their own. The
deconcentrator simply compares the confidence score of the intents given from the processors and
returns the intent with the highest score.

Functionality

Seite 6 / 20

https://github.com/beuthbot/gateway
https://github.com/beuthbot/deconcentrator-js
https://github.com/beuthbot/rasa
https://github.com/beuthbot/registry
https://github.com/beuthbot/mensa
https://github.com/beuthbot/weather
https://github.com/beuthbot/deconcentrator-js

Zwischenbericht S52020

deconcentrator-js

‘gateway ‘ ‘deconcentrator.js ‘ ‘ processor-queue.js ‘ ‘rasa-processor.js ‘ ‘ PROC 1.js ‘ ‘ PROC 2.js

I
|
request [
with message _ |

response
with|intent

b
>
create and fill queue

P

run

all
interpretations
<

h
>

(async) request

(async) request

>
>

_ interpretation

(async) request

_ interpretation

interpretation

L
>

filter out
best intent

<

[
1

|
|
|
|
|
|
|
|
|
|
|
1

A

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1

‘gateway ‘ ‘deconcentrator.js ‘ ‘ processor-queue.js ‘ ‘rasa-processor.js ‘ ‘ PROC 1.js ‘ ‘ PROC 2.js

processor-queue.js

For every incoming message the deconcentrator creates a new “ProcessorQueue’ (defined in

“processor-queue.js’) and adds all available processors to it. When calling the

".interpretate(message)” function of the queue it starts requesting the processors for an

interpretation. The number of asynchronous requests can be set with the

“numOfSynchronProcessors™ property of the queue.

processor.js

Defines the interface of a NLU processor.

API

The following lists the resources that can be requested with the deconcentrator API.

Request
GET

Answer:

life sign.

http://localhost:8338

Seite 7/ 20

https://ds-maximum.de

Zwischenbericht S52020

Hello from BeuthBot Deconcentrator: 0.1.1
Request interpretation of message.

POST http://localhost:8338/messages

Request Schema

{
"text": "Wie wird das Wetter morgen?",
"min confidence score": 0.8,
"processors": ["rasa"]

}

Whereas the specification of the min_confidence_score and theprocessors is optional. If not minimum
confidence score is given a default one is used (by now this is 0.8). For now there is only the usage of
RASA implemented so there is no effect of specifying the processors property.

Model of an incoming message.

@ Message

text: String
min_confidence_score: Float
processors: Array<String>

Response Schema

The response for a successfully processed request to the deconcentrator contains the following
information.

{
"intent": {
"name": "wetter",
"confidence": 0.9518181086
b
"entities": [
{
"start": 20,
"end": 26,
“text": "morgen",

"value": "2020-01-20T00:00:00.000+01:00",
"confidence": 1.0,
"additional info": {
"values": [
{
"value": "2020-01-20T00:00:00.000+01:00",

Seite 8 / 20

Zwischenbericht S52020

Ilgrainll: Ildayll’
“type": "value"
}
1,
"value": "2020-01-20T00:00:00.000+01:00",
Ilgrainll. Ildayll’
“type": "value"
}
"entity": "time"
}
1,
"text": "Wie wird das Wetter morgen?"
}
Model of an answer.
@ Answer
text: String
intent: Intent
entities: Array<Entity>
text: String
@ Entity
start: Int
@ Intent end: Int
confidence: Float o .
confidence: Float
additional_info: Additionallnfo
entity: String

¢

@ Additionallnfo

value: String
grain: String
type: String
values: Dictionary<String, Any>

Seite 9/ 20

https://ds-maximum.de

Zwischenbericht S52020

The response for a unsuccessfully processed request to the deconcentrator or when an error occures
contains the following information.

{

"error": "The given message can't be interpretated.",
"text": "Wie wird das Wetter morgen?"

Requirements Analysis deconcentrator.js

e /DCF100/ The deconcentrator responds to incoming POST requests by delegating the message
to a collection of NLU processor which try to interpretate the given message

e /DCF101/ The deconcentrator accepts incoming messages as defined via the Request Schema

» /DCF102/ The deconcentrator sends answers as defined via the Response Schema

» /DCF103/ The deconcentrator answers with proper messages for occuring errors

e /DCF104/ New NLU processors muss be easy to integrate

* /DCF105/ The deconcentrator has a default value for the minimum confidence score

¢ /DCF106/ The deconcentrator has a default value for the list of processors

e /DCF107/ The minimum confidence score can be set globally within the Dockerfile

e /DCF108/ The list of processors to be used can be set globally within the Dockerfile

Deploying on Virtual Machine

Install BeuthBot on a virtual machine:

#
$

+ H + +

+ H

+

clone project
git clone https://github.com/beuthbot/beuthbot.git

change into directory
cd beuthbot

initialize submodules
git submodule init

clone all submodules
git submodule update

edit environment file
vim .env

start BeuthBot
docker-compose up -d

Contents of .env file

Following lists the contents of the .env file of the BeuthBot project. Note that the value for
WEATHER_API_KEY has been removed for security reasons.

Seite 10/ 20

Zwischenbericht S52020

deconcentrator
RASA_ENDPOINT=http://rasa:5005/model/parse

gateway

DECONCENTRATOR ENDPOINT=http://deconcentrator:8338/message
REGISTRY ENDPOINT=http://registry:3000/get-response

registry

MENSA ENDPOINT=http://mensa:8000/meals

WETTER ENDPOINT=http://weather:7000/weather

WEATHER API KEY= # key removed

Contents of docker-compose.yml file

Following lists the contents of the docker-compose.yml file of the BeuthBot project.

version: '3.7'

services:

gateway:
build: gateway
restart: unless-stopped
links:
- deconcentrator
- registry
ports:
- 3000:3000
environment:
- DECONCENTRATOR ENDPOINT
- REGISTRY ENDPOINT

deconcentrator:

build: deconcentrator-js
restart: unless-stopped
links:

- rasa
ports:

- 8338:8338
environment:

- RASA ENDPOINT

registry:
build: registry
restart: unless-stopped

Seite 11/ 20

https://ds-maximum.de

Zwischenbericht S52020

links:
- mensa
- weather
ports:
- 9922:3000
environment:
- MENSA ENDPOINT
- WETTER ENDPOINT

rasa:
image: rasa/rasa:1.6.0-spacy-de
restart: unless-stopped
ports:
- 5005:5005
volumes:
- ./rasa/docker/rasa-app-data:/app
command :
- run
- --enable-api
- --cors
N
duckling:
image: rasa/duckling:0.1.6.2
restart: unless-stopped
ports:
- 8000:8000

mensa:
build: mensa microservice
restart: unless-stopped
ports:
- 9950:8000

weather:
build: weather microservice
restart: unless-stopped
ports:
- 9951:7000
environment:
- WEATHER API KEY

Install Telegram Bot on a virtual machine:

clone with HTTPS

$ git clone https://github.com/beuthbot/telegram-bot.git

change into directory

Seite 12/ 20

Zwischenbericht S52020

$ cd telegram-bot

edit environment file
vim .env

+ H#

start Telegram Bot
docker-compose up -d

“+r

Contents of .env file

Following lists the contents of the .env file of the telegram-bot project. Note that the value for
TELEGRAM_TOKEN has been removed for security reasons.

GATEWAY ENDPOINT=http://172.17.0.1:3000
TELEGRAM_TOKEN= # removed

Contents of docker-compose.yml file

Following lists the contents of the docker-compose.yml file of the BeuthBot project.

version: '3.7'
services:
telegram-bot:
build:
restart: unless-stopped
environment:
- GATEWAY ENDPOINT
- TELEGRAM TOKEN

Current output of “docker ps’ on virtual machine:

CONTAINER ID IMAGE COMMAND

CREATED STATUS PORTS

NAMES

881848bfaa3c beuthbot gateway "docker-entrypoint.s.." 55
minutes ago Up 54 minutes 0.0.0.0:3000->3000/tcp

beuthbot gateway 1

c5eflf78da2f beuthbot deconcentrator "docker-entrypoint.s.." 55
minutes ago Up 55 minutes 0.0.0.0:8338->8338/tcp

beuthbot deconcentrator 1

992d5ed6d94b beuthbot registry "docker-entrypoint.s.." 55
minutes ago Up 55 minutes 0.0.0.0:9922->3000/tcp

beuthbot registry 1

62e0bf7e2c8d rasa/rasa:1.6.0-spacy-de "rasa run --enable-a.." 55
minutes ago Up 55 minutes 0.0.0.0:5005->5005/tcp

beuthbot rasa 1

b33f342d24fd beuthbot weather "docker-entrypoint.s.." 55

Seite 13/20 https://ds-maximum.de

Zwischenbericht S52020

minutes ago Up 55 minutes 8000/tcp, 0.0.0.0:9951->7000/tcp
beuthbot weather 1

8bebaB8a324e8 beuthbot mensa "docker-entrypoint.s.." 55
minutes ago Up 55 minutes 0.0.0.0:9950->8000/tcp

beuthbot mensa 1

75b7b5653577 telegram-bot telegram-bot "docker-entrypoint.s.." 2
hours ago Up 2 hours

telegram-bot telegram-bot 1

7d9e26988632 rasa/duckling:0.1.6.2 "duckling-example-ex.." 24
hours ago Up 24 hours 0.0.0.0:8000->8000/tcp

beuthbot duckling 1

Both projects contains a update.sh file which can be used to fast update the projects.

Requirements

Funktionale Anforderungen:

/F100/ Das System muss den User fragen, ob er méchte dass seine Praferenzen gespeichert werden.
/F101/ Das System muss die User-Praferenzen in einer Datenbank speichern kénnen.

/F102/ Das System muss die Responses der Microservices in einem Cache zwischenspeichern.
/F103/ Das System muss den User an Termine und Prafungen erinnern.

/F200/ Das System muss die Prifungen von der Beuth Prifungs-Website scrapen.

/F201/ Das System muss die PDF die das System vom User bekommt verarbeiten kdnnen.
/F202/ Das System muss dem User die Mdglichkeit bieten einen Stundenplan manuell anzulegen.
/F203/ Das System muss dem User die Mdglichkeit bieten einen Stundenplan per PDF anzulegen.
Nicht-Funktionale Anforderungen:

/NF100/ Das System sollte Nachrichten innerhalb von 3 Sekunden beantworten.

/NF101/ Das System sollte so modular wie maglich aufgebaut sein.

/NF102/ Das System sollte eine Downtime von maximal 1% haben.

/NF103/ Die Datenbank sollte eine Downtime von maximal 1% haben.

/NF200/ Das System sollte DSGVO konform sein.

/NF201/ Das System sollte standard Sicherheitsvorkehrungen besitzen.

Persistence

Damit der Benutzer sich selbst nicht standig wiederholen muss, wird ihm die Mdglichkeit geboten,

Seite 14/ 20

Zwischenbericht S52020

seine Vorlieben zu speichern. Als Datenbank haben wir uns fur die MongoDB entschieden.

BeuthBot \

Persistence \

DB NAME - database-container

User / /

—
telgram-bot t

Cache

Die Motivation hinter dem Cache besteht darin, dass externe API's, wie z.B. die WetterAPI, welche in
dem Beuthbot Projekt benutzt wird, nur begrenzt Zugriffe zulassen. Daher mussen die Anfragen durch
ein Cache begrenzt werden, um wiederholte Anfragen an die API zu limitieren und im Cache
abzulegen. Ein positiver Effekt des Caches wird auch sein, dass Zeit gespart werden kann, weil
unnotige Anfragen an die Services erspart bleiben.

Damit die Anfrage gecached werden kann, muss diese zuvor von dem Deconcentrator interpretiert
werden, um die korrekte Intention hinter dieser Anfrage zu verstehen, da die Anfrage des Benutzers
jedesmal anders formuliert sein kdnnte. Diese Intention gibt der Registry an, an welchen Microservice
diese Anfrage geschickt werden soll und erhalt auch die Antwort des jeweiligen Microservices. Um
doppelte Anfragen in zu kurzer Zeit zu verhindern, ist die optimale Stelle fur den Cache bei der
Registry.

subject to change

Seite 15/ 20 https://ds-maximum.de

Zwischenbericht S52020

Intention Request

>

registry internal

registry T
| |
|
|
|

Cache Lookup

Cache Response u

[

microservices

——— |

alt

Service Request !

|
|
|
|
|
|
|
|
|
|
/ [requested resource is not in cache]
| |
|

Final Response

Additional Services

microservices

Ebenfalls wurden weitere Mirko Service Ideen fur denn zuklnftigen Beuth Bot entwickelt welche da

waren:

Microservice: Scraper

Dieser Microservice soll ausschlieBlich von anderen Services, wie beispielsweise Schedule benutzt

werden. Er soll Informationen von Webseiten, wie von der Beuth Website scapen und in eine

Datenbank speichern. Auf diese Daten kdnnen letztendlich andere Microservices zugreifen und diese

fur ihre Dienste benutzen.

‘registry ‘ ‘scraper ‘

| |

|

request w
%

websites

d

response
G ‘

‘registry ‘ ‘scraper ‘

websites

Seite 16 / 20

Zwischenbericht S52020

Microservice: PDF Reader

Dieser Service erwertet eine spezielle PDF des jeweiligen Stundenplans des Studenten und gibt den
Inhalt der PDF in einem JSON zurlck. Der Service soll spater von den Microservices Schedule und
finals benutz werden, welche die Daten weiterverarbeiten.

‘ registry ‘ ‘ pdf_reader ‘

request !
—— >

|

|

| response D
B

|

‘ registry ‘ ‘ pdf reader ‘

Microservice: Schedule

Dieser soll dem User die Funktionalitat zur Verfigung stellen seinen eigenen Stundenplan erstellen
und diesen auch andern zu konnen. Ebenfalls soll der Service den User Notifications senden konnen,
wie in der folgenden Beispiel Notification: ,In 3 Wochen ist in dem Fach xy folgende Abgabe: Abgabe
3“. Dabei werden mehrere Moglichkeiten der Eingabe der Module in Betracht gezogen, wie
Grundlegend das ganz normale manuelle einfligen per Text(Chat Eingabe), aber auch das
Hinzufligen von Modulen tber die Module ID. Fur das hinzufligen eines Modules Uber die Modul ID
wurde Uberlegt in eine Datenbank alle sich in diesem Semester existierenden Facher abzuspeichern
und aus diesen Eintragen die Daten der Modul ID abzugleichen. Auch wurde Uberlegt die PDF, welche
sich jeder Student frei von der Beuth herunterladen kann abzuschicken und den Stundenplan
automatisch anhand der Daten auf der PDF zu generieren. Dabei wird darauf geachtet, dass die PDF
nicht zwischengespeichert wird, sondern nur eingelesen, Ubersetzt und aus den Zwischenspeicher
wieder geldscht wird.

‘registry ‘ ‘schedule ‘ 8

%

request

|

|

|

|

|

|

|

|

|

! alt [request with module id]
| |
|

|

|

|

|

|

|

|

|

request !
>

response

Seite 17/ 20 https://ds-maximum.de

Zwischenbericht S52020

Microservice: finals

Dieser Dienst bietet dem User seine noch ausstehenden Prifungen einsehen zu kdnnen. Dabei soll
der Service das Datum der noch ausstehenden Abgaben bzw. Prifungen, sowie dessen Fach und
Inhalt wiedergeben. Auch soll dem User ermdglicht werden eigene Abgaben Uber eine Chat-Funktion
hinzuzufigen, bzw. zu andern. Die Daten werden einerseits aus dem vom User selbst eingetragenen
Daten ermittelt, aber auch durch einen Scraper, welcher die aktuell eingetragenen Prufungen des

jeweiligen Faches Uber die Beuth Website ermittelt. FUr das automatische ermitteln der

Prafungsdaten muss entweder der Studiengang, sowie das Semester und der Zug eingegeben

werden, oder aber der Stundenplan als PDF gesendet werden.

registry internal

Bh
I |

| |
I request \
——>

[
response

&

Goal for end of se

request with cache data
I

mester

Following diagram demonstrates the current state of the working component of the BeuthBot.

Current State:

Seite 18 / 20

Zwischenbericht S52020

User

Service; \ / \
telgram-bot weather gateway reglstry

NLU

rasa Lj deconcentrator-js

Following diagram demonstrates the target state of the working component of the BeuthBot.

BeuthBot \
Services \

pdf-reader ‘ ‘scraper schedule weather mensa ‘

AN | 7

cache

Per5|stence

% DB_NAME database-container ‘ reg|stry
User

telgram-bot

Y

‘ deconcentrator-js [j rasa ‘

Timeplan

subject to change

@startuml

Seite 19/ 20 https://ds-maximum.de

Zwischenbericht S52020

project starts the 2020/04/23

[Introductory training & building comprehension] as [IT] lasts 25 days
-- Transitional tasks --

then [Replace Deconcentrator] as [D] lasts 7 days

then [Conflate project] as [C] lasts 4 day

-- Implementation --

[Persist user preferences (Lukas & Tobias)] as [I11] lasts 30 days and starts 5 days after [C]'s end
[Cache microservices responses (Jan)] as [I12] lasts 30 days and starts 5 days after [C]'s end
[Transform scraper microservice (Denny & Jan)] as [I13] lasts 30 days and starts 5 days after [C]'s end
[Adjust weather microservice (Denny)] as [14] lasts 30 days and starts 5 days after [C]'s end

[New course schedule microservice (?) (Denny & Jan)] as [I5] lasts 30 days and starts 5 days after
[C]'s end

[C]->[I1]

[C]->[12]

[C]->[13]

[C]-> [14]

[C]-> [I5]

[D] is 80% completed

[11]is 0% completed

[12] is 0% completed

[13] is 0% completed

[14] is 0% completed

[15] is 0% completed

@enduml

Nutzungshinweis: Auf dieses vorliegende Schulungs- oder Beratungsdokument (ggf.) erlangt der
Mandant vertragsgemaR ein nicht ausschlielRliches, dauerhaftes, unbeschranktes, unwiderrufliches
und nicht Ubertragbares Nutzungsrecht. Eine hieriber hinausgehende, nicht zuvor durch
datenschutz-maximum bewilligte Nutzung ist verboten und wird urheberrechtlich verfolgt.

Seite 20/ 20

	Zwischenbericht SS2020
	BeuthBot Project Group
	Inhaltsangabe
	Was haben wir vorgefunden?
	Initial Project State

	Was haben wir gemacht?
	Resultierende Aufgaben
	Wo stehen wir gerade?
	Wo werden wir tun?
	BeuthBot Project (One Git Repository)
	Motivation
	BeuthBot's structure before this repository:
	BeuthBot's structure with this repository:
	Default Ports of Services
	Packages / Submodules
	Other Packages

	deconcentrator-js
	Functionality
	processor-queue.js
	processor.js
	API
	Request Schema
	Response Schema
	Requirements Analysis deconcentrator.js

	Deploying on Virtual Machine
	Contents of .env file
	Contents of docker-compose.yml file
	Contents of .env file
	Contents of docker-compose.yml file
	Current output of `docker ps` on virtual machine:

	Requirements
	Persistence
	Cache
	Additional Services
	Microservice: Scraper
	Microservice: PDF Reader
	Microservice: Schedule
	Microservice: finals

	Goal for end of semester
	Timeplan

