
 datenschutz-maximum Version 23.07.2020 14:50, Seite 1 / 22

https://wiki.ziemers.de/wiki/software/beuthbot/berichte/ss2020/abschluss?rev=1595508643 Gedruckt 01.02.2026 10:49

Abschlussbericht zum Masterprojekt SS 2020

Inhalt

Inhalt1.
Abstract2.
Uebersicht / Inbetriebnahme3.
Deconcentrator-JS4.
Database5.
Database Microservice6.
RASA Trainieren7.
Cache8.
Update Wetter Microservice9.

Abstract

Uebersicht

Die folgende Liste zeigt die Erweiterungen, welche in diesem Semester umgesetzt wurden.

BeuthBot Master Repository erstellt um die Organisation des Projektes zu vereinfachen.
Dokumentation des Master Repository, Erweiterung der bestehenden Dokumentation.
Ersetzen des Deconcentrators durch Deconcentrator-JS.
Einbauen einer Persistenz:

Realisierung eines passenden Models für die Persistierung der Daten.
Implementierung des Database-Controllers welcher eine MongoDB nutzt um die User
Daten zu speichern.
Implementierung des Database-Microservice welcher Datenbank-Anfragen auflöst und sie
durchsetzt.

Einbau Cache in Registry.5.
Umbau / Verbesserung des Weather-Microservice:6.

Formatierung der Antworten
Refactoring des bestehenden Codes
Einbau von zeitbezogenen Daten
Einbau von ortsbezogenen Daten

BeuthBot Master Repository

Wie dem Zwischenbericht entnommen werden kann, hatten wir am Anfang ziemliche
Schwierigkeiten das gesamte Projekt in Betrieb zu nehmen. Jedes Repository musste einzeln
gecloned werden und danach jede Komponente einzeln gestartet werden. Aus dieser Not haben
wir ein Master-Repository erstellt, welches die einzelnen Module als Git-Submodules beinhaltet.
So ist es nun möglich mit einem einzigen Befehl das gesamte Projekt zu laden. Das Projekt kann
unter dem Link https://github.com/beuthbot/beuthbot angeschaut werden.

https://github.com/beuthbot/beuthbot

Abschlussbericht zum Masterprojekt SS 2020

Seite 2 / 22

Inbetriebnahme

clone project
$ git clone --recursive https://github.com/beuthbot/beuthbot.git

or with ssh
$ git clone --recursive git@github.com:beuthbot/beuthbot.git

change into directory
$ cd beuthbot

edit environment file
$ cp .env.sample .env && vim .env

start BeuthBot
$ docker-compose up -d

check whether the gateway is running on port 3000
$ curl http://localhost:3000 # prints: Hello from BeuthBot
Gateway

Komponenten des BeuthBot

BeuthBot

NLU

Services

Database

gateway

registrycache

deconcentrator-js rasa

weather mensadatabase

database-controller mongo-db

User

telgram-bot

Deconcentrator-JS

Der Deconcentrator-JS übernimmt die gleiche Aufgabe wie der Deconcentrator und ersetzt
diesen. Die Entscheidung den Deconcentrator auszutauschen kam daher, dass es uns am
Anfang des Semester nicht möglich war, den Deconcentrator aus dem vorherigen Semester in
Betrieb zu nehmen. Auch nach langer Beschäftigung und der Hilfe eines Studenten aus dem
letzten Semester blieben Erfolge aus. Da dieses Projekt noch weiter entwickelt werden und
somit ein einfacher Einstieg und eine überschaubare Komplexität gewährleistet werden soll,
erschien es uns also sinnvoll den Deconcentrator durch den neuen Deconcentrator-JS
auszutauschen. Ein weiterer Faktor bestand darin, dass der alte Deconcentrator in Python
geschrieben war. Eine Vorgabe des Projekts ist aber die Verwendung der Programmiersprache

https://github.com/beuthbot/deconcentrator-js
https://github.com/beuthbot/deconcentrator

Abschlussbericht zum Masterprojekt SS 2020

Seite 3 / 22 https://ds-maximum.de

JavaScript. Mehr Informationen über den Deconcentrator-JS befinden sich hier im Wiki. Das
Projekt kann unter dem Link https://github.com/beuthbot/deconcentrator-js angeschaut werden.

Database

database

Table of Content

database1.
Table of Content2.
Motivation3.
Requirements4.

Functionala.
Non Functionalb.

User Stories5.
Use Cases6.
Klassendiagramm User7.
Technologies8.
Integration9.

Sequenzdiagramm mit angesteuertem Servicea.
Sequenzdiagramm nur Datenbank betreffendb.

Getting Started10.
Windowsa.

API11.
Request all Usersa.
Request Usersb.
Add / Change Detailc.
Delete all Detailsd.
Delete Detaile.

Motivation

Die Motivation hinter einer Datenbank im BeuthBot Projekt kommt durch das Problem,
dass Benutzer ihre Wünsche immer wieder komplett ausführen müssen.
Als Beispiel: Wenn der Benutzer die Mensa nach veganen Gerichten anfragt, dann muss
er das bei der nächsten Anfrage wiederholen.
Die Datenbank soll das Problem beheben und den Benutzern die Möglichkeit bieten ihre
Vorlieben zu persistieren, ohne dass diese sich einen extra Account anlegen müssen.
Dabei muss darauf geachtet werden, dass in der Zukunft noch neue Services dazu
kommen können. Die Architektur und die Datenbank sollten so konzipiert werden, dass
neue Details die zu neuen Services gehören gespeichert werden können, ohne dass die
Datenbank dazu angepasst werden muss.

Requirements

Was soll die DB können?

https://wiki.ziemers.de/wiki/software/beuthbot/deconcentrator-js
https://github.com/beuthbot/deconcentrator-js

Abschlussbericht zum Masterprojekt SS 2020

Seite 4 / 22

Functional

/DBF100/ The system must be able to store details about a user.
/DBF101/ The system must be able to add a detail related to a user.
/DBF102/ The system must be able to change a detail related to a user.
/DBF103/ The system must be able to delete a detail related to a user.
/DBF104/ The system must be able to load all details about a user.
/DBF105/ The system must be able to delete all entries related to a user.
/DBF106/ It must be able to add new services and store related user details
without modifying the database.
/DBF200/ The database must store data related to a user.
/DBF201/ The database must be able to store a nickname related to a user.
/DBF202/ The database must be able to store a new detail about a user without
scaling the schema.
/DBF203/ The database must have a capacity of N.

Non Functional

/DBNF200/ The database must be easily scalable.
/DBNF201/ The database must be easy replaceable.

Referenz WS2019:

/NF500/ The system should comply with DSGVO guidelines
/NF501/ The system should be based on security standards
/NF502/ Databases should be protected from unwanted access
/NF503/ The databases should be password protected
/NF504/ The databases should be based on security standards
/NF600/ The system should restart the service independently in the event of a
service failure
/NF700/ The system should be well documented
/NF701/ The system should be easy to understand

User Stories

"Als <Rolle> möchte ich <Ziel/Wunsch>, um <Nutzen>"

/DBUS100/ Als Student möchte ich meine Vorlieben speichern, damit ich sie nicht
immer wieder ausschreiben muss.
/DBUS101/ Als Student möchte ich nach einigen Anfragen, dass ich gefragt werde
ob ich meine Vorlieben speichern möchte, damit ich sie nicht immer wieder
ausschreiben muss.
/DBUS102/ Als Student möchte ich, dass der Bot mich wiedererkennt ohne einen
extra Account anlegen zu müssen, damit ich keine zusätzlichen persönlichen
Informationen preisgeben muss.
/DBUS103/ Als Student möchte ich dem Bot sagen können, dass er meine ALLE
meine Daten löschen soll.
/DBUS103/ Als Student möchte ich dem Bot sagen können, dass er ein Detail über
mich löschen soll.

Abschlussbericht zum Masterprojekt SS 2020

Seite 5 / 22 https://ds-maximum.de

Use Cases

BeuthBot

DBController

«Application»

Remember Nickname

Forget Nickname

Remember Detail

Forget Detail

Forget All Detail

Student

Klassendiagramm User

User

id: Int
nickname: String?
details: Dictionary<String, AnyObject>

Technologies

Durch die Anforderung, dass die Details, die zu einem User gespeichert werden sehr
variabel sein können, ist von einer relationalen Datenbank wie MySQL o.ä. abzuraten.
MongoDB ist eine dokumentenorientierte NoSQL-Datenbank. Mit ihr können Sammlungen
von JSON-ähnlichen Dokumenten erstellt und verwaltet werden. So können wir die Daten
zu einem User in komplexen Hierarchien verschachteln und erweitern ohne uns Gedanken
zu einem Tabellen-Schema machen zu müssen.

MongoDB Link
MongoDB Docker Image Link

https://www.mongodb.com/de
https://hub.docker.com/_/mongo

Abschlussbericht zum Masterprojekt SS 2020

Seite 6 / 22

docker-compose.yml

MongoDB (Container) DB Controller (Container)

Integration

BeuthBot

Persistence

gateway

database-containerDB_NAME
User

telgram-bot

Sequenzdiagramm mit angesteuertem Service

gateway

gateway

deconcentrator

deconcentrator

databasecontroller

databasecontroller

database

database

service

service

Request

Response (Intent + [Args]

Request User

Get User

Return User

Responses User

Request (User + [Args])

Answer

Abschlussbericht zum Masterprojekt SS 2020

Seite 7 / 22 https://ds-maximum.de

Sequenzdiagramm nur Datenbank betreffend

gateway

gateway

deconcentrator

deconcentrator

databasecontroller

databasecontroller

database

database

Request "Merke dir, dass ich vegetarisch esse."

Response (Intent + [Args])

Add Detail "vegetarisch"

Store "vegetarisch"

Result

GW: Result

Nächsten Schritte

Projekt Ordner und GitHub Repository erstellen
DB dem BeuthBot Projekt hinzufügen
Geignete Dockerfile formulieren mit MongoDB als Abhängigkeit
Datenbankcontroller erstellen, welcher ADD, REMOVE, CHANGE Befehle für Details
entgegen nimmt
Trainingsmodell für RASA für die Datenbank erstellen
Erste versuche mit dem Trainingsmodell von RASA

Getting Started

Die Datenbank wurde mit Docker erstellt. Um diese zum laufen zu bringen müssen
folgende Befehle ausgeführt werden:

clone the repository
git clone https://github.com/beuthbot/database.git

go to the folder
cd database

start the docker container to run the mongodb and its
corresponding database microservice
docker-compose up

Windows

Damit es auf Windows funktionieren kann müssen folgende Zeilen in der docker-
compose.yml Datei geändert werden:

Abschlussbericht zum Masterprojekt SS 2020

Seite 8 / 22

...
 volumes:
 - mongodata:/data/db # needed for me to run container on
Windows 10
 #- ./../.database:/data/db # For Mac/Linux
...
needed for me to run container on Windows 10
volumes:
 mongodata:

Außerdem muss ein shared Folder existieren, welcher beispielsweise 'mongodb' genannt
werden muss, worin sich der Ordner 'data' mit den Unterordnern 'db' und 'configdb'
befindet. Die Ordnerstruktur sollte nun wie folgt aussehen:

E:\mongodb
 └───data
 ├───configdb
 └───db

API

Request all Users

Requests all Users in the collection

GET http://localhost:27000/users

Response

{...},
{
 "id": 12345678,
 "nickname": "Alan",
 "details" : {
 "eating_habit" : "vegetarisch",
 "city" : "Berlin"
 }
},
{...}

Error

{
 "error": ...
}

Abschlussbericht zum Masterprojekt SS 2020

Seite 9 / 22 https://ds-maximum.de

Request User

GET http://localhost:27000/users/<id>

Reponse

Request a single user with the given id.

{
 "id": 12345678,
 "nickname": "Alan",
 "details" : {
 "eating_habit" : "vegetarisch",
 "city" : "Berlin"
 }
}

Error

{
 "error": ...
}

Add / Change Detail

Add/Change a Detaile to/from the User with the given id.

POST http://localhost:27000/users/<id>/detail

Request Body

{
 "detail": "eating_habit",
 "value": "vegetarisch"
}

Reponse

If the operation was successful the error will be set to null and the success will be set to
true. If the operation failed an error message will be set and the success will be set to
false.

{

Abschlussbericht zum Masterprojekt SS 2020

Seite 10 / 22

 "error": null,
 "success": true | false
}

Delete all Details

Deletes all Details from the User with the given id

DELETE http://localhost:27000/user/<id>/detail?q=<value>

Reponse

If the operation was successful the error will be set to null and the success will be set to
true. If the operation failed an error message will be set and the success will be set to
false.

{
 "error": null,
 "success": true | false
}

Delete Detail

Deletes one Detail from the User with the given id.

DELETE http://localhost:27000/user/<id>/detail?q=<value>

Reponse

If the operation was successful the error will be set to null and the success will be set to
true. If the operation failed an error message will be set and the success will be set to
false.

{
 "error": null,
 "success": true | false
}

Database Microservice

Abschlussbericht zum Masterprojekt SS 2020

Seite 11 / 22 https://ds-maximum.de

Database Microservice

Inhaltsangabe
Motivationa.
Technologienb.
Funktionsweisec.
APId.

Motivation

Um die Datenbank unabhängig von den anderen Microservices zu machen, mussten die
Datenbank Operationen ausgelagert werden. Das führte dazu, dass die Intents von Rasa
aufgelöst werden mussten, damit die richtigen Datenbank Operationen ausgeführt
werden können.

Technologien

Aufgebaut wurde dieser Microservice als REST-Server mit JavaScript. Die verwendeten
Technologien dafür sind:

NodeJS
ExpressJS
Axios

Funktionsweise

Registy

Registy

DatabaseMicroservice

DatabaseMicroservice

DatabaseController

DatabaseController

MongoDB

MongoDB

Send Intent

DatabaseOperation

DatabaseOperation

Response

Response

Response

Da dieser Microservice nur eine Route besitzt, über welche der Intent gesendet wird,
muss der Microservice dazu in der Lage sein, diesen Intent aufzulösen, sodass die richtige
Datenbank-Operation ausgeführt wird. Der Intent kommt ursprünglich von Rasa. Dieser

https://nodejs.org/en/
http://expressjs.com/
https://github.com/axios/axios

Abschlussbericht zum Masterprojekt SS 2020

Seite 12 / 22

sieht wie folgt aus:

{
 "user": {
 "id": 12345,
 "telegram-id": 12345,
 "nickname": "Al",
 "details": {
 "home": "Bonn",
 "birthday": "23.06.1912",
 ...
 }
 },
 "intent":{
 "name":"database-set",
 "confidence":0.9998944998
 },
 "entities":[
 ...,
 {
 "start":26,
 "end":36,
 "value":"krebstiere",
 "entity":"allergen",
 "confidence":0.9999893608,
 "extractor":"CRFEntityExtractor"
 },
 {
 "start":37,
 "end":51,
 "value":"alergisch bin.",
 "entity":"detail-allergic",
 "confidence":0,
 "extractor":"CRFEntityExtractor"
 },
 ...
],
 "text":"Merke dir, dass ich gegen Krebstiere alergisch bin.",
 ...
}

Durch den Intent, erfährt man, welche Operation ausgeführt werden soll und in den
Entities steht drin, was hinzugefügt/gelöscht/ausgelesen werden soll, sowie von welchem
User diese Operation ausgeführt werden soll. Die Entity mit dem höchsten Confidence-
Score ist die gewollte Anfrage an die Datenbank.

API

Abschlussbericht zum Masterprojekt SS 2020

Seite 13 / 22 https://ds-maximum.de

Request

POST https://localhost:<PORT>/resolve

oder

POST https://localhost:<PORT>/database

Response

{
 answer: {
 content: 'Deine Daten:\n' +
 '\n' +
 'Nickname: **DennySchumann**\n' +
 'Vorname: **Denny**\n' +
 'Nachname: **Schumann**\n' +
 '\n' +
 'home: **köln**\n',
 history: ['intent-resolve']
 }
}

RASA Trainieren

Neue Funktionen oder Microservices müssen dem BeuthBot „beigebracht“ werden.
Konkret für Rasa heißt das, dass es neue Trainings-Daten braucht aus denen das Model
generiert werden kann. Dieses Model nutzt Rasa zur Laufzeit um Anfragen zu
interpretieren. Am Anfang des Semesters haben wir bereits ein funktionierendes Model
und die dazugehörigen Trainings-Daten vorgefunden. Die Trainings-Daten wurde mit Hilfe
von Tracy generiert. Tracy wird mit einem Web-Interface bedient. Man kann dort Sätze
und Entities eingeben aus denen sich Trainings-Daten generieren lassen welche dann
exportiert werden können. Die Daten wurden damals manuell eingegeben. Als wir das
Model erweitern wollten, hätten wir diese Daten wieder manuell eingeben und ergänzen
müssen. Da dies nicht praktikabel erschien haben wir nach alternativen Lösungen gesucht
und eine gefunden. Chatito ist ein Tool mit dem wie bei Tracy Trainings-Daten generiert
werden können. Der Unterschied ist das bei Chatito die Daten nicht manuell über ein
Web-Interface eingeben werden, sondern mit einer DSL (Domain Specific Language) in
*.chatito-Dateien definiert werden. Chatito generiert dann aus einer beliebigen Anzahl
gegebener .chatito-Dateien die Trainings-Daten welche dann von Rasa genutzt werden
können um das Model zu erstellen. Die Chatito Dateien liegen im Rasa Projekt im Ordner
/training/app/input.

Eine Anleitung zum Trainieren eines neuen Models ist hier in diesem Wiki. Die gleiche
Anleitung und mehr Informationen befinden sich in der TRAINING.md Datei des Rasa
Projektes.

https://github.com/YuukanOO/tracy
https://github.com/rodrigopivi/Chatito
https://wiki.ziemers.de/wiki/software/beuthbot/rasa/training
https://github.com/beuthbot/rasa/blob/master/.documentation/TRAINING.md

Abschlussbericht zum Masterprojekt SS 2020

Seite 14 / 22

Cache

cache

Motivation

Der Cache soll vorrangig die Microservices entlasten, indem er die Response
zwischenspeichert und der Registry für eine gewisse Zeit zur Verfügung stellt.
Insbesondere der Service Weather ist davon betroffen, da dieser eine API von
OpenWeatherMap nutzt, welches pro Tag 4000 Wettervorhersagen treffen kann, sonst
wird dieser Kostenpflichtig bzw. kann dann keine Requests mehr entgegen nehmen.

Free Startup
40 USD /
month

Developer
180 USD /
month

Professional
470 USD / month

Enterprise
2.000 USD /
month

60
calls/minute
1,000,000
calls/month

600
calls/minute
10,000,000
calls/month

3,000
calls/minute
100,000,000
calls/month

30,000
calls/minute
1,000,000,000
calls/month

200,000
calls/minute
5,000,000,000
calls/month

Current
Weather
Minute
Forecast 1
hour∗
Hourly
Forecast 2
days∗
Daily Forecast
7 days∗
Historical
weather 5
days∗
Climatic Forecast
30 days
Bulk Download

Current
Weather
Minute
Forecast 1
hour∗∗
Hourly Forecast
2 days∗∗
Daily Forecast
16 days
Historical
weather 5
days∗∗
Climatic Forecast
30 days
Bulk Download

Current Weather
Minute Forecast
1 hour
Hourly Forecast
4 days
Daily Forecast
16 days
Historical
weather 5 days
Climatic
Forecast 30 days
Bulk Download

Current Weather
Minute Forecast 1
hour
Hourly Forecast 4
days
Daily Forecast 16
days
Historical weather
5 days
Climatic Forecast
30 days
Bulk Download

Current Weather
Minute forecast 1
hour
Hourly Forecast 4
days
Daily Forecast 16
days
Historical weather
5 days
Climatic Forecast
30 days
Bulk Download

Basic weather
maps
Historical maps

Basic weather
maps
Historical maps

Advanced
weather maps
Historical maps

Advanced weather
maps
Historical maps

Advanced weather
maps
Historical maps

Weather
triggers

Weather
triggers

Weather triggers Weather triggers Weather triggers

Weather
widgets

Weather
widgets

Weather widgets Weather widgets Weather widgets

Uptime 95% Uptime 95% Uptime 99.5% Uptime 99.5% Uptime 99.9%

∗ - 1,000 API calls per day by using One Call API

https://openweathermap.org/price
https://openweathermap.org/api/weather-map-2
https://openweathermap.org/api/weather-map-2
https://openweathermap.org/api/one-call-api
https://openweathermap.org/api/one-call-api
https://openweathermap.org/api/one-call-api
https://openweathermap.org/api/one-call-api
https://openweathermap.org/api/one-call-api
https://openweathermap.org/api/one-call-api
https://openweathermap.org/api/one-call-api
https://openweathermap.org/api/one-call-api
https://openweathermap.org/api/one-call-api#history
https://openweathermap.org/api/one-call-api#history
https://openweathermap.org/api/one-call-api#history
https://openweathermap.org/api/forecast30
https://openweathermap.org/api/forecast30
https://openweathermap.org/bulk
https://openweathermap.org/api/weathermaps
https://openweathermap.org/api/weathermaps
https://openweathermap.org/api/weather-map-2
https://openweathermap.org/api/weather-map-2
https://openweathermap.org/api/weather-map-2
https://openweathermap.org/triggers
https://openweathermap.org/triggers
https://openweathermap.org/widgets-constructor
https://openweathermap.org/widgets-constructor

Abschlussbericht zum Masterprojekt SS 2020

Seite 15 / 22 https://ds-maximum.de

∗∗ - 2,000 API calls per day by using One Call API

Requirements

Die Registry soll Requests von dem Deconcentrator entgegennehmen und überprüfen, ob
diese Request innerhalb einer fest definierten Zeit bereits eine Response erhalten hat. Ist
dies der Fall guckt die Registry in den Cache, um sich die dort Zwischengespeicherte
Response zu holen und diese an den Sender der Request zu leiten. Dabei “ersetzt” der
Cache den angesprochenen Microservice. Ist dies allerdings nicht der Fall wendet sich die
Registry weiter an den angesprochenen Microservice und speichert dessen Response in
den Cache.

Functional

/CAF100/ The system must check if the requested resource is available in the
cache before relaying the request to a microservice.
/CAF100/ The system must place the response of a microservice in the cache.
/CAF200/ The cache must offer an option to save a response of a microservice.
/CAF201/ The cache must offer an option to retrieve a saved response.
/CAF202/ The cache must automatically delete a saved response if the given
timeout has been exceeded.

Non Functional

/CANF100/ The system must answer faster with a cached response than if a
request is relayed to a microservice.
/CANF200/ The cache must save at least 1000 Responses.
/CANF201/ The cache must answer in at least 5ms.

User Stories

/CAUS100/ Als Betreiber möchte ich Anfragen die das selbe Ergebnis erzeugen
abfangen und damit die Microservices entlasten.
/CAUS101/ Als Betreiber möchte ich die Anfragen an die verschiedenen APIs
reduzieren um nicht in ein teureres Preispaket zu fallen.

Use Cases

Technologies

Für Node.js existieren mehrere Caching Lösungen. Bei den ersten recherchen fielen die
npm packages “memory-cache” und “node-cache” auf. Da “memory-cache” seit drei
Jahren kein Update bekommen hat, haben wir uns letzten endes für “node-cache”
entschieden.

“node-cache” ist eine simple Caching Lösung, die nach dem Key-Value prinzip
funktioniert. Der Funktionsumfang besteht dabei aus den Methoden “set”, “get” und
“delete”, wobei die Methode “set” einem zusätzlich erlaubt noch einen Timeout (“ttl” bzw.
“time to live” genannt) zu übergeben. Ist der Timeout überschritten, wird der Eintrag

Abschlussbericht zum Masterprojekt SS 2020

Seite 16 / 22

automatisch aus dem Cache gelöscht. Der Nachteil dieser Lösung ist, dass nur eine
Millionen einträge pro Cache Instanz eingetragen werden können. Da aber gleich viel in
den Cache eingetragen wird, wie die Anzahl angebotener Funktionen aller Microservices,
wird dieser Nachteil nicht eintreffen.

Integration

Der Cache wird wie schon in Technologies beschrieben in Node.js verwendet. Spezifisch
wird der Cache dem „registry“ Server hinzugefügt.

Das Resultat (veranschaulicht im folgenden UML diagram) besteht darin, dass registry
versucht die angefragte Ressource aus dem Cache zu holen und gegebenfalls eine
Anfrage an den entsprechenden Microservice zu stellen, falls die Ressource nicht im
Cache vorhanden ist.

registry internal

gateway

gateway

registry

registry

cache

cache

microservices

microservices

Intention Request

Cache Lookup

Cache Response

alt [requested resource is not in cache]

Service Request

Service Response

Cache Persist

Final Response

Resultate

Die momentane Implementierung ist wie zuvor beschrieben umgesetzt. Der einzige
Unterschied besteht darin, dass die Microservices die Möglichkeit besitzen, einen ttl
mitzuschicken. Wird kein ttl vom Microservice mitgeschickt, so wird ein Standard ttl
(momentan 30 Minuten) verwendet.

Wenn ein Microservice einen ttl mitschicken möchte, so muss dem „answer“ Object
lediglich ein integer namens „ttl“ hinzugefügt werden. Dieser repräsentiert die Anzahl an
Sekunden, wie lang zwischengespeichert werden soll.

Abschlussbericht zum Masterprojekt SS 2020

Seite 17 / 22 https://ds-maximum.de

Update Wetter Microservice

Beschreibung

Der Wetterservice ist ein Dienst, welche aktuell über den Telegram Client angesprochen
wird. Dabei kann der Service per Chat einfach angesprochen werden ohne das der User
im Vorfeld etwas einrichten muss. Dieser Dienst antwortet dabei auf Fragen, welche das
Wetter im Allgemeinen, aber auch im Stündlichen betreffen, ebenso wie das vergangene
Wetter. Aktuell ist eine Anfrage von bis zu 7 Tage in der Zukunft, sowie 5 Tage in der
Vergangenheit möglich. Ab 47 Stunden in der Zukunft kann der Bot nur noch mit dem
allgemeinen Wetter antworten, sprich keine stündliche anfrage.

Verwendete Technologien

Node.js(https://nodejs.org/en/) Express.js(https://expressjs.com/de) Axios.js(
https://www.npmjs.com/package/axios) OpenWeatherMap(https://openweathermap.org)

Open Weather Api

Open Weather Map ist eine Api, welche einem die Möglichkeit bietet Wettervorhersagen
abzurufen. Dabei bietet sie 4 verschiedene Arten von Calls: /weather → Aktuellen
Wettervorhersage /onecall → Aktuellen Wettervorhersage, bis 7 Tage in die Zukunft
/forecast → Wettervorhersage bis zu 5 Tage in die Zukunft /history → Wettervorhersage
bis zu 5 Tage in die Vergangenheit In dieses Service wurden /onecall und /history
verwendet, da /forecast nur 5 Tage in die Zukunft geht und auch nur in 3 Stunden
abständen. Ebenso wurde /weather nicht genommen, das nur das aktuelle Wetter
zurückgibt, welches in /onecall schon enthalten ist. Um diese Api nutzen zu können muss
erst einmal ein Key auf der Seite generiert werden, welcher dann am Ende jeweils als
Parameter an die URL angehängt werden muss.

Geoservice Erweiterung des Wetter Microservices

Geo Service

Motivation

Die OpenWeatherMap API akzeptiert nur Koordinaten (sprich Longitude & Latitude). Daher
muss die von Rasa übergebene Entity namens „city“ in Koordinaten umgewandelt
werden. Ursprünglich wollten wir Rasa um diese Funktion erweitern, aus verschiedenen
Gründen haben wir uns letztenendes dafür entschieden, die Umwandlung im
Wetterservice durchzuführen.

https://nodejs.org/en/
https://expressjs.com/de
https://www.npmjs.com/package/axios
https://openweathermap.org

Abschlussbericht zum Masterprojekt SS 2020

Seite 18 / 22

Requirements

Der Wetterservice soll um einen Service erweitert werden, der die „city“ Entity von Rasa
in Koordinaten umwandelt. Ist keine „city“ Entity vorhanden, soll der Wohnort des Users
(„home“ Wert aus der Datenbank) verwendet werden. Falls weder Entity noch Wohnort
vorhanden ist, soll „Berlin“ als Standardwert genutzt werden. Um diesen Wert
umzuwandeln muss der Service dann diesen Wert an die Nominatim API von
OpenStreetMap schicken und soll danach die Response auswerten. Erhält der Service ein
leeres Array (sprich keine Koordinaten) oder einen Fehler, so soll eine Fehlermeldung
zurückgegeben werden.

Technologies

Um einen String in Koordinaten umzuwandeln, existieren mehrere Lösungen. Bei den
Recherchen stachen vorallem „Maps“ von Google und „Nominatim“ von OpenStreetMaps
hervor. Im Endeffekt haben wir uns für Nominatim entschieden, da diese eine Open-
Source Alternative zu Maps darstellt, durch die Offenheit einen niedrigschwelligen
Einstieg gewährt und damit ein unkompliziertes Nutzen der API ermöglicht. Des weiteren
bietet Nominatim zusätzlich einen Docker Container an und kann damit auch Lokal
benutzt werden.

“Nominatim” ist eine Geocoding Lösung, mit der man einen beliebigen String in
Koordinaten umwandeln kann. Der String kann dabei zum Beispiel aus einem Stadtnamen
oder einem Firmennamen bestehen. Der Service sucht anhand des Strings alle relevanten
Koordinaten aus deren Datenbank und gibt diese in einem Response zurück. Des
weiteren, kann in der Anfrage bestimmt werden, in welchem Datenformat die Koordinaten
verpackt werden sollen. Wenn anhand des Strings keine Einträge in der Datenbank
gefunden wurden, übergibt die API ein leeres Array.

Integration

Wie schon in Motivation beschrieben, wird der Wetterservice Server um den Geoservice
erweitert.

Das Resultat (veranschaulicht im folgenden UML diagram) besteht darin, dass der
Wetterservice einen String an die Nominatim API schickt und den Response auswertet.

Abschlussbericht zum Masterprojekt SS 2020

Seite 19 / 22 https://ds-maximum.de

weather-service internal

registry

registry

weather-service

weather-service

geo-service

geo-service

Nominatim API

Nominatim API

Initial Request

Coordinates Call

API Lookup

API Response

Coordinates Result

Weather API Lookup

Final Response

Further Reading

- Nominatim API

weather.js

Hier wird die Request vom Service registry aufgenommen und eine Response erstellt und
gesendet. Als erstes wird die Request in message und Ort aufgeteilt. Daraufhin wird der
Ort, welcher in der Request mitgesendet wurde in Längen.- und Breitengrad via eines
Geoservices umgerechnet und wieder gegeben. Dies muss passieren, da die
OpenWeatherMap Api bei einigen Anfragen nicht die Ortschaft selbst, sondern nur die
Latitude und longitude nimmt. Ist kein Ort in der Request vorhanden wird standardmäßig
Berlin oder der durch die Persistenz abgespeicherte Wohnungsort genommen. Daraufhin
wird geprüft, ob die Request eine Uhrzeit enthält, um festzustellen ob eine allgemeine
oder eine zeitspezifische Anfrage gestellt wurde. Bevor die Bearbeitung anfängt, wird
vorher festgestellt, ob das Angefragte Datum auf dem Rahmen fällt, sprich z.B. zu weit in
der Zukunft. Ist alles Regelkonform, wird festgelegt, in welchem Zeitraum das Wetter
angefragt wird, welches dann an den richtigen Codeblock weitergeleitet wird. Im Block
angekommen wird als erstes immer ein Api Call an OpenWeatherMap über die Datei
weatherService mit dem Datum und den Koordinaten getätigt, welches dann in der
Variable weather gespeichert wird. Danach werden weather(Response vom api call),
date(Datum) und city(Stadtname) an generatedMessage und die jeweilige Methode
weitergeleitet, welche dann die fertige Nachricht zurückgibt. Diese wird letztendlich als
Response an des User weitergeleitet.

weatherService.js

Diese Datei besitzt zwei Methoden, welche jeweils mit axios einen Api call an
OpenWeatherMap machen und diesen zurückgeben. Beide Funktionen benötigen jeweils
die Koordinaten des gefragten Bereiches. Die Methode getForecast gibt ein JSON zurück in

https://nominatim.org/

Abschlussbericht zum Masterprojekt SS 2020

Seite 20 / 22

welchem das aktuelle, das stündliche und das tägliche Wetter befindet, welche dann
später in generatedMessage.js wiederverwertet werden. Die Funktion getHistory hingegen
benötigt noch die spezifische Zeit als long Wert und gibt ebenfalls ein JSON zurück,
allerdings nur mit dem exakt gefragten Moment, sowie ein Objekt mit den Stündlichen
vergangenen Wetterdaten.

generatedMessage.js

Diese ist die zuletzt aufgerufene Datei, in welcher drei Methoden existieren, welche den
Response Text für Telegram zusammenstellen. Jede Funktion benötigt die Parameter
weather(Response vom weatherService.js api call), date(Datum) und city(Stadtname).
Es müssen diverse Zeitformate erstellt, bzw. angepasst werden, welche dann in der
Response eingefügt werden. Ebenso befindet sich in der Response von OpenWeatherMap
ein Icon String, welches dann in folgende Text Icons umgewandelt wird: ☀️, ⛅, ☁️, �️, �️, �️,
❄️, �️. Diese ganzen umgewandelten Daten werden daraufhin in einen fest definierten
String integriert und als messageText zurückgegeben.

Telegram Weather Request and Response

Allgemeine Wetteranfrage

Dies ist eine Chatanfrage ohne dabei einen spezifischen Ort zu nennen. Wenn keine Ort
genannt wird, wird standardmäßig der Sitzt der Beuth Hochschule, also Berlin genommen
oder aber der User hat seinen Wohnort gesetzt, dann wird dieser genommen, es seiden
die Geo Api kenn diesen nicht.

Mit spezifischer Uhrzeit

Bei dieser Chatanfrage wurde zusätzlich die Uhrzeit mit angegeben. Wenn es sich um die
nächsten 47 Stunden handelt, dann wird dementsprechend ein Response mit der Uhrzeit
gesendet. Überschreitet das Datum allerdings 47 Stunde, so wird es wie eine allgemeine
Anfrage gehandhabt.

https://wiki.ziemers.de/_detail/wiki/software/beuthbot/berichte/ss2020/aktuelles_wetter.png?id=wiki%3Asoftware%3Abeuthbot%3Aberichte%3Ass2020%3Aabschluss

Abschlussbericht zum Masterprojekt SS 2020

Seite 21 / 22 https://ds-maximum.de

Ort ohne Uhrzeit

Wir ein Ort, allerdings keine Uhrzeit mit geschickt, so handhabt der Bot die Anfrage wir im
ersten Bild, nur das er denn mitgesendeten Ort nimmt, es seiden die Geo Api kennt
diesen nicht, dann wir standardmäßig Berlin genommen.

Ort mit Uhrzeit

Wird neben der Uhrzeit noch ein Ort gesendet und überschreitet es nicht 47 Stunden in
die Zukunft, kann der Bot da Wetter an dem Ort mit der spezifisch mitgesendeten Uhrzeit
zurückgeben, vorausgesetzt die Geo Api kennt diesen auch.

https://wiki.ziemers.de/_detail/wiki/software/beuthbot/berichte/ss2020/nur_uhrzeit.png?id=wiki%3Asoftware%3Abeuthbot%3Aberichte%3Ass2020%3Aabschluss
https://wiki.ziemers.de/_detail/wiki/software/beuthbot/berichte/ss2020/ort_ohne_uhrzeit.png?id=wiki%3Asoftware%3Abeuthbot%3Aberichte%3Ass2020%3Aabschluss

Abschlussbericht zum Masterprojekt SS 2020

Seite 22 / 22

Complete Sequence Diagram

weather-service internal

registry

registry

routes/weather.js

routes/weather.js

services/geoService.js

services/geoService.js

services/weatherService.js

services/weatherService.js

services/generateResponse.js

services/generateResponse.js

Nominatim API

Nominatim API

OpenWeatherMap API

OpenWeatherMap API

Initial Request

Coordinates Call

API Lookup

API Response

Coordinates Result

Weather Call

API Lookup

API Response

Weather Result

Generate Message Call

Response Message

Final Response

Nutzungshinweis: Auf dieses vorliegende Schulungs- oder Beratungsdokument (ggf.)
erlangt der Mandant vertragsgemäß ein nicht ausschließliches, dauerhaftes,
unbeschränktes, unwiderrufliches und nicht übertragbares Nutzungsrecht. Eine
hierüber hinausgehende, nicht zuvor durch datenschutz-maximum bewilligte Nutzung
ist verboten und wird urheberrechtlich verfolgt.

https://wiki.ziemers.de/_detail/wiki/software/beuthbot/berichte/ss2020/ort_mit_uhrzeit.png?id=wiki%3Asoftware%3Abeuthbot%3Aberichte%3Ass2020%3Aabschluss

	[Abschlussbericht zum Masterprojekt SS 2020]
	Abschlussbericht zum Masterprojekt SS 2020
	Inhalt
	Abstract
	Uebersicht
	BeuthBot Master Repository
	Inbetriebnahme
	Komponenten des BeuthBot

	Deconcentrator-JS
	Database

	database
	Table of Content
	Motivation
	Requirements
	Functional
	Non Functional

	User Stories
	Use Cases
	Klassendiagramm User
	Technologies
	Integration
	Sequenzdiagramm mit angesteuertem Service
	Sequenzdiagramm nur Datenbank betreffend

	Nächsten Schritte
	Getting Started
	Windows

	API
	Request all Users
	Response
	Error

	Request User
	Reponse
	Error

	Add / Change Detail
	Request Body
	Reponse

	Delete all Details
	Reponse

	Delete Detail
	Reponse

	Database Microservice

	Database Microservice
	Inhaltsangabe
	Motivation
	Technologien
	Funktionsweise
	API
	Request
	Response

	RASA Trainieren
	Cache

	cache
	Motivation
	Requirements
	Functional
	Non Functional

	User Stories
	Use Cases
	Technologies
	Integration
	Resultate
	Update Wetter Microservice
	Beschreibung
	Verwendete Technologien
	Open Weather Api
	Geoservice Erweiterung des Wetter Microservices

	Geo Service
	Motivation
	Requirements
	Technologies
	Integration
	Further Reading
	weather.js
	weatherService.js
	generatedMessage.js
	Telegram Weather Request and Response
	Allgemeine Wetteranfrage
	Mit spezifischer Uhrzeit
	Ort ohne Uhrzeit
	Ort mit Uhrzeit

	Complete Sequence Diagram

