ﬁ datenschutz-maximum Version 23.07.2020 13:14, Seite 1/ 19

Abschlussbericht zum Masterprojekt SS 2020

Inhalt

Inhalt

Abstract

Uebersicht / Inbetriebnahme
Deconcentrator-)S

Database

Database Microservice
RASA Trainieren

Cache

Update Wetter Microservice

CooNOURWNE

Abstract

Uebersicht

Die folgende Liste zeigt die Erweiterungen, welche in diesem Semester umgesetzt wurden.

e BeuthBot Master Repository erstellt um die Organisation des Projektes zu vereinfachen.
e Dokumentation des Master Repository, Erweiterung der bestehenden Dokumentation.
e Ersetzen des Deconcentrators durch Deconcentrator-)S.
e Einbauen einer Persistenz:
o Realisierung eines passenden Models fur die Persistierung der Daten.
o Implementierung des Database-Controllers welcher eine MongoDB nutzt um die User
Daten zu speichern.
o Implementierung des Database-Microservice welcher Datenbank-Anfragen auflost und sie
durchsetzt.
5. Einbau Cache in Registry.
6. Umbau / Verbesserung des Weather-Microservice:
o Formatierung der Antworten
o Refactoring des bestehenden Codes
o Einbau von zeitbezogenen Daten
o Einbau von ortsbezogenen Daten

BeuthBot Master Repository

Wie dem Zwischenbericht entnommen werden kann, hatten wir am Anfang ziemliche
Schwierigkeiten das gesamte Projekt in Betrieb zu nehmen. Jedes Repository musste einzeln
gecloned werden und danach jede Komponente einzeln gestartet werden. Aus dieser Not haben
wir ein Master-Repository erstellt, welches die einzelnen Module als Git-Submodules beinhaltet.
So ist es nun maglich mit einem einzigen Befehl das gesamte Projekt zu laden. Das Projekt kann
unter dem Link https://github.com/beuthbot/beuthbot angeschaut werden.

https://wiki.ziemers.de/wiki/software/beuthbot/berichte/ss2020/abschluss?rev=1595502858 Gedruckt 01.02.2026 12:35

https://github.com/beuthbot/beuthbot

Abschlussbericht zum Masterprojekt SS 2020

Inbetriebnahme

clone project
git clone --recursive https://github.com/beuthbot/beuthbot.git

A H#

or with ssh
git clone --recursive git@github.com:beuthbot/beuthbot.git

+ H#

change into directory
cd beuthbot

+

edit environment file
cp .env.sample .env && vim .env

“+

start BeuthBot
$ docker-compose up -d

check whether the gateway is running on port 3000
$ curl http://localhost:3000 # prints: Hello from BeuthBot
Gateway

Deconcentrator-JS

Der Deconcentrator-JS Ubernimmt die gleiche Aufgabe wie der Deconcentrator und ersetzt
diesen. Die Entscheidung den Deconcentrator auszutauschen kam daher, dass es uns am
Anfang des Semester nicht méglich war, den Deconcentrator aus dem vorherigen Semester in
Betrieb zu nehmen. Auch nach langer Beschaftigung und der Hilfe eines Studenten aus dem
letzten Semester blieben Erfolge aus. Da dieses Projekt noch weiter entwickelt werden und
somit ein einfacher Einstieg und eine Uberschaubare Komplexitat gewahrleistet werden soll,
erschien es uns also sinnvoll den Deconcentrator durch den neuen Deconcentrator-JS
auszutauschen. Ein weiterer Faktor bestand darin, dass der alte Deconcentrator in Python
geschrieben war. Eine Vorgabe des Projekts ist aber die Verwendung der Programmiersprache
JavaScript. Mehr Informationen Uber den Deconcentrator-JS befinden sich hier im Wiki. Das
Projekt kann unter dem Link https://github.com/beuthbot/deconcentrator-js angeschaut werden.

Database

database

Table of Content

1. database
2. Table of Content
3. Motivation
4. Requirements
a. Functional
b. Non Functional

Seite 2 /19

https://github.com/beuthbot/deconcentrator-js
https://github.com/beuthbot/deconcentrator
https://wiki.ziemers.de/wiki/software/beuthbot/deconcentrator-js
https://github.com/beuthbot/deconcentrator-js

Abschlussbericht zum Masterprojekt SS 2020

. User Stories
. Use Cases
. Klassendiagramm User
. Technologies
. Integration
a. Sequenzdiagramm mit angesteuertem Service
b. Sequenzdiagramm nur Datenbank betreffend
10. Getting Started
a. Windows
11. API

O 00 N4 O U

Request all Users
Request Users

Add / Change Detail
Delete all Details
Delete Detail

® Qo T o

Motivation

Die Motivation hinter einer Datenbank im BeuthBot Projekt kommt durch das Problem,
dass Benutzer ihre Winsche immer wieder komplett ausfuhren mussen.

Als Beispiel: Wenn der Benutzer die Mensa nach veganen Gerichten anfragt, dann muss
er das bei der nachsten Anfrage wiederholen.

Die Datenbank soll das Problem beheben und den Benutzern die Mdglichkeit bieten ihre
Vorlieben zu persistieren, ohne dass diese sich einen extra Account anlegen mussen.
Dabei muss darauf geachtet werden, dass in der Zukunft noch neue Services dazu
kommen kdnnen. Die Architektur und die Datenbank sollten so konzipiert werden, dass
neue Details die zu neuen Services gehoren gespeichert werden konnen, ohne dass die
Datenbank dazu angepasst werden muss.

Requirements

Was soll die DB kbnnen?

Functional

e /DBF100/ The system must be able to store details about a user.

e /DBF101/ The system must be able to add a detail related to a user.

e /DBF102/ The system must be able to change a detail related to a user.

e /DBF103/ The system must be able to delete a detail related to a user.

e /DBF104/ The system must be able to load all details about a user.

e /DBF105/ The system must be able to delete all entries related to a user.

e /DBF106/ It must be able to add new services and store related user details
without modifying the database.

e /DBF200/ The database must store data related to a user.

e /DBF201/ The database must be able to store a nickname related to a user.

e /DBF202/ The database must be able to store a new detail about a user without
scaling the schema.

e /DBF203/ The database must have a capacity of N.

Seite 3/19 https://ds-maximum.de

Abschlussbericht zum Masterprojekt SS 2020

Non Functional

e /DBNF200/ The database must be easily scalable.
e /DBNF201/ The database must be easy replaceable.

Referenz WS2019:

e /NF500/ The system should comply with DSGVO guidelines

e /NF501/ The system should be based on security standards

e /NF502/ Databases should be protected from unwanted access

e /NF503/ The databases should be password protected

e /NF504/ The databases should be based on security standards

e /NF600/ The system should restart the service independently in the event of a
service failure

e /NF700/ The system should be well documented

e /NF701/ The system should be easy to understand

User Stories

"Als <Rolle> mochte ich <Ziel/Wunsch>, um <Nutzen>"

e /DBUS100/ Als Student mochte ich meine Vorlieben speichern, damit ich sie nicht
immer wieder ausschreiben muss.

e /DBUS101/ Als Student méchte ich nach einigen Anfragen, dass ich gefragt werde
ob ich meine Vorlieben speichern mdchte, damit ich sie nicht immer wieder
ausschreiben muss.

e /DBUS102/ Als Student mochte ich, dass der Bot mich wiedererkennt ohne einen
extra Account anlegen zu mussen, damit ich keine zusatzlichen persénlichen
Informationen preisgeben muss.

e /DBUS103/ Als Student méchte ich dem Bot sagen kdnnen, dass er meine ALLE
meine Daten I6schen soll.

e /DBUS103/ Als Student mdchte ich dem Bot sagen kdnnen, dass er ein Detail Uber
mich léschen soll.

Use Cases

Seite 4 /19

Abschlussbericht zum Masterprojekt SS 2020

BeuthBot \

/
Student \

Forget All Detail
_Forget Detail

Remember Detail
Forget Nickname

Remember Nickname

«Application»

DBController

Klassendiagramm User

@ User
id: Int

nickname: String?

details: Dictionary<String, AnyObject>

Technologies

Durch die Anforderung, dass die Details, die zu einem User gespeichert werden sehr
variabel sein kénnen, ist von einer relationalen Datenbank wie MySQL 0.a. abzuraten.
MongoDB ist eine dokumentenorientierte NoSQL-Datenbank. Mit ihr kdnnen Sammlungen
von JSON-ahnlichen Dokumenten erstellt und verwaltet werden. So kdnnen wir die Daten
zu einem User in komplexen Hierarchien verschachteln und erweitern ohne uns Gedanken

zuU einem Tabellen-Schema machen zu mussen.

e MongoDB Link

e MongoDB Docker Image Link

docker-compose.yml \

MongoDB (Container)

g]
DB Controller (Container)

g]

Seite 5/19

https://ds-maximum.de

https://www.mongodb.com/de
https://hub.docker.com/_/mongo

Abschlussbericht zum Masterprojekt SS 2020

DB_NAME - database-container

Integration
BeuthBot \
Persistence \
User

7/

)

telgram-bot t

Sequenzdiagramm mit angesteuertem Service

‘ databasecontroller

‘da

‘ deconcentrator ‘
|

: Request <

‘4__F_‘_‘?.SPF_’_'??_‘?__(_'_’?_t_‘?_’??f__[ﬁr._g_?_] ______ u

Request User

Responses User

Request (User + [Args])

h
>

Get User

-

tab@se

service
|

deconcentrator ‘

‘ databasecontroller

‘da

tabase

Sequenzdiagramm nur Datenbank betreffend

|
service

Seite 6/ 19

Abschlussbericht zum Masterprojekt SS 2020

{ databasecontroller }

{ deconcentrator

datab@se

: Request "Merke dir, dass ich vegetarisch esse."

[}

|

> 1

1(Response (Intent + [Args]) u :
T T |
|

| |

Store "vegetarisch"

T

|

|

l Result I_I
| et anaaeanee

|

|

deconcentrator

datat;ase

databasecontroller] 8

Nachsten Schritte

Projekt Ordner und GitHub Repository erstellen

DB dem BeuthBot Projekt hinzufugen

Geignete Dockerfile formulieren mit MongoDB als Abhangigkeit
Datenbankcontroller erstellen, welcher ADD, REMOVE, CHANGE Befehle fur Details
entgegen nimmt

e Trainingsmodell fir RASA flir die Datenbank erstellen

e Erste versuche mit dem Trainingsmodell von RASA

Getting Started

Die Datenbank wurde mit Docker erstellt. Um diese zum laufen zu bringen mussen
folgende Befehle ausgeflhrt werden:

clone the repository
git clone https://github.com/beuthbot/database.git

go to the folder
cd database

start the docker container to run the mongodb and its
corresponding database microservice
docker-compose up

Windows

Damit es auf Windows funktionieren kann mussen folgende Zeilen in der docker-
compose.yml Datei geandert werden:

volumes:
- mongodata:/data/db # needed for me to run container on
Windows 10

Seite 7 /19 https://ds-maximum.de

Abschlussbericht zum Masterprojekt SS 2020

#- ./../.database:/data/db # For Mac/Linux

needed for me to run container on Windows 10
volumes:
mongodata:

AuBerdem muss ein shared Folder existieren, welcher beispielsweise 'mongodb' genannt
werden muss, worin sich der Ordner 'data’' mit den Unterordnern 'db' und 'configdb'
befindet. Die Ordnerstruktur sollte nun wie folgt aussehen:

E:\mongodb
Ldata

——configdb
——db

API

Request all Users

Requests all Users in the collection

GET http://localhost:27000/users

Response
leoclis
{
"id": 12345678,
"nickname": "Alan",
"details" : {
"eating habit" : "vegetarisch",
"city" : "Berlin"
}
I
{...}
Error
{
"error":
}

Request User

Seite 8 /19

Abschlussbericht zum Masterprojekt SS 2020

GET http://localhost:27000/users/<id>

Reponse

Request a single user with the given id.

{
"id": 12345678,

"nickname": "Alan",
"details" : {
"eating habit" : "vegetarisch",
"city" : "Berlin"
}
}

Error

{

"error":

}

Add / Change Detail

Add/Change a Detaile to/from the User with the given id.

POST http://localhost:27000/users/<id>/detail

Request Body

{
"detail": "eating habit",
"value": "vegetarisch"

}

Reponse

If the operation was successful the error will be set to null and the success will be set to
true. If the operation failed an error message will be set and the success will be set to
false.

{

"error": null,
"success": true | false

Seite 9/ 19

https://ds-maximum.de

Abschlussbericht zum Masterprojekt SS 2020

}

Delete all Details

Deletes all Details from the User with the given id

DELETE http://localhost:27000/user/<id>/detail?q=<value>
Reponse

If the operation was successful the error will be set to null and the success will be set to
true. If the operation failed an error message will be set and the success will be set to
false.

{

"error": null,
"success": true | false

Delete Detail

Deletes one Detail from the User with the given id.

DELETE http://localhost:27000/user/<id>/detail?q=<value>
Reponse

If the operation was successful the error will be set to null and the success will be set to
true. If the operation failed an error message will be set and the success will be set to
false.

{

"error": null,
"success": true | false

Database Microservice

Database Microservice

Seite 10/ 19

Abschlussbericht zum Masterprojekt SS 2020

Inhaltsangabe

a. Motivation

b. Technologien
¢. Funktionsweise
d. API

Motivation

Um die Datenbank unabhangig von den anderen Microservices zu machen, mussten die
Datenbank Operationen ausgelagert werden. Das fluhrte dazu, dass die Intents von Rasa
aufgeldst werden mussten, damit die richtigen Datenbank Operationen ausgefuhrt
werden konnen.

Technologien

Aufgebaut wurde dieser Microservice als REST-Server mit JavaScript. Die verwendeten
Technologien daflr sind:

* Node)S
e Express|S
e AXios

Funktionsweise

‘ Registy ‘ ‘ DatabaseMicroservice ‘ ‘ DatabaseController ‘ MongoDB
| |

| |
| Send Intent 1

Y

DatabaseOperation

|
|
|
|
|
Ll |
|
|

DatabaseOperation

Response U
S e R e

Response

|
r
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
Response 1
|

‘ Registy ‘ ‘ DatabaseMicroservice ‘ ‘ DatabaseController ‘ MongoDB

Da dieser Microservice nur eine Route besitzt, Gber welche der Intent gesendet wird,
muss der Microservice dazu in der Lage sein, diesen Intent aufzulosen, sodass die richtige
Datenbank-Operation ausgefuhrt wird. Der Intent kommt urspringlich von Rasa. Dieser
sieht wie folgt aus:

Seite 11/ 19 https://ds-maximum.de

https://nodejs.org/en/
http://expressjs.com/
https://github.com/axios/axios

Abschlussbericht zum Masterprojekt SS 2020

"user": {
"id": 12345,
“telegram-id": 12345,
"nickname": "Al",
"details": {
"home": "Bonn",
"birthday": "23.06.1912",

}
IE
"intent": {
"name" : "database-set",
"confidence":0.9998944998
b
"entities": [
{
"start":26,
"end":36,
"value":"krebstiere",
"entity":"allergen",
"confidence":0.9999893608,
"extractor":"CRFEntityExtractor"
3
{
"start":37,
"end":51,
"value":"alergisch bin.",
"entity":"detail-allergic”,
"confidence":0,
"extractor":"CRFEntityExtractor"
}

1,
“text":"Merke dir, dass ich gegen Krebstiere alergisch bin.",

}

Durch den Intent, erfahrt man, welche Operation ausgeflhrt werden soll und in den
Entities steht drin, was hinzugefugt/gel6scht/ausgelesen werden soll, sowie von welchem
User diese Operation ausgefuhrt werden soll. Die Entity mit dem héchsten Confidence-
Score ist die gewollte Anfrage an die Datenbank.

API

Request

POST https://localhost:<PORT>/resolve

Seite 12 /19

Abschlussbericht zum Masterprojekt SS 2020

oder

POST https://localhost:<PORT>/database

Response

answer: {
content: 'Deine Daten:\n' +
"\n' +
‘Nickname: **DennySchumann**\n' +
‘Vorname: **Denny**\n' +
"Nachname: **Schumann**\n' +
‘\n' +
"home: **koln**\n',
history: ['intent-resolve']
}
}

RASA Trainieren

Neue Funktionen oder Microservices mussen dem BeuthBot , beigebracht” werden.
Konkret flr Rasa heist das, dass es neue Trainings-Daten braucht aus denen das Model
generiert werden kann. Dieses Model nutzt Rasa zur Laufzeit um Anfragen zu
interpretieren. Am Anfang des Semesters haben wir bereits ein funktionierendes Model
und die dazugehorigen Trainings-Daten vorgefunden. Die Trainings-Daten wurde mit Hilfe
von Tracy generiert. Tracy wird mit einem Web-Interface bedient. Man kann dort Satze
und Entities eingeben aus denen sich Trainings-Daten generieren lassen welche dann
exportiert werden kénnen. Die Daten wurden damals manuell eingegeben. Als wir das
Model erweitern wollten, hatten wir diese Daten wieder manuell eingeben und erganzen
mussen. Da dies nicht praktikabel erschien haben wir nach alternativen Losungen gesucht
und eine gefunden. Chatito ist ein Tool mit dem wie bei Tracy Trainings-Daten generiert
werden kénnen. Der Unterschied ist das bei Chatito die Daten nicht manuell Gber ein
Web-Interface eingeben werden, sondern mit einer DSL (Domain Specific Language) in
*.chatito-Dateien definiert werden. Chatito generiert dann aus einer beliebigen Anzahl
gegebener .chatito-Dateien die Trainings-Daten welche dann von Rasa genutzt werden
konnen um das Model zu erstellen. Die Chatito Dateien liegen im Rasa Projekt im Ordner
[training/app/input.

Eine Anleitung zum Trainieren eines neuen Models ist hier in diesem Wiki. Die gleiche
Anleitung und mehr Informationen befinden sich in der TRAINING.md Datei des Rasa
Projektes.

Cache

Seite 13/ 19

https://ds-maximum.de

https://github.com/YuukanOO/tracy
https://github.com/rodrigopivi/Chatito
https://wiki.ziemers.de/wiki/software/beuthbot/rasa/training
https://github.com/beuthbot/rasa/blob/master/.documentation/TRAINING.md

Abschlussbericht zum Masterprojekt SS 2020

cache

Motivation

Der Cache soll vorrangig die Microservices entlasten, indem er die Response
zwischenspeichert und der Registry fir eine gewisse Zeit zur Verfigung stellt.
Insbesondere der Service Weather ist davon betroffen, da dieser eine APl von
OpenWeatherMap nutzt, welches pro Tag 4000 Wettervorhersagen treffen kann, sonst
wird dieser Kostenpflichtig bzw. kann dann keine Requests mehr entgegen nehmen.

Free Startup Developer Professional Enterprise
40 USD / 180 USD/ 470 USD / month 2.000 USD /
month month month
60 600 3,000 30,000 200,000
calls/minute calls/minute calls/minute calls/minute calls/minute
1,000,000 10,000,000 100,000,000 1,000,000,000 5,000,000,000
calls/month calls/month calls/month calls/month calls/month
Current Current Current Weather Current Weather Current Weather
Weather Weather Minute Forecast Minute Forecast 1 Minute forecast 1
Minute Minute 1 hour hour hour
Forecast 1 Forecast 1 Hourly Forecast Hourly Forecast 4 Hourly Forecast 4
hourx hour* * 4 days days days
Hourly Hourly Forecast Daily Forecast Daily Forecast 16 Daily Forecast 16
Forecast 2 2 days* * 16 days days days
days* Daily Forecast Historical Historical weather Historical weather
Daily Forecast 16 days weather 5 days 5 days 5 days
7 days* Historical Climatic Climatic Forecast Climatic Forecast
Historical weather 5 Forecast 30 days 30 days 30 days
weather 5 daysx* x Bulk Download Bulk Download Bulk Download
days* Climatic Forecast
Climatic Forecast 30 days
30 days Bulk Download
Bulk Download
Basic weather Basic weather Advanced Advanced weather Advanced weather
maps maps weather maps maps maps

Historical maps Historical maps Historical maps Historical maps

Weather Weather Weather triggers Weather triggers
triggers triggers
Weather Weather Weather widgets Weather widgets
widgets widgets

Uptime 95% Uptime 95% Uptime 99.5% Uptime 99.5%

* - 1,000 API calls per day by using One Call API
%% - 2,000 API calls per day by using One Call API

Historical maps

Weather triggers

Weather widgets

Uptime 99.9%

Seite 14 /19

https://openweathermap.org/price
https://openweathermap.org/api/weather-map-2
https://openweathermap.org/api/weather-map-2
https://openweathermap.org/api/one-call-api
https://openweathermap.org/api/one-call-api
https://openweathermap.org/api/one-call-api
https://openweathermap.org/api/one-call-api
https://openweathermap.org/api/one-call-api
https://openweathermap.org/api/one-call-api
https://openweathermap.org/api/one-call-api
https://openweathermap.org/api/one-call-api
https://openweathermap.org/api/one-call-api#history
https://openweathermap.org/api/one-call-api#history
https://openweathermap.org/api/one-call-api#history
https://openweathermap.org/api/forecast30
https://openweathermap.org/api/forecast30
https://openweathermap.org/bulk
https://openweathermap.org/api/weathermaps
https://openweathermap.org/api/weathermaps
https://openweathermap.org/api/weather-map-2
https://openweathermap.org/api/weather-map-2
https://openweathermap.org/api/weather-map-2
https://openweathermap.org/triggers
https://openweathermap.org/triggers
https://openweathermap.org/widgets-constructor
https://openweathermap.org/widgets-constructor

Abschlussbericht zum Masterprojekt SS 2020

Requirements

Die Registry soll Requests von dem Deconcentrator entgegennehmen und Uberprifen, ob
diese Request innerhalb einer fest definierten Zeit bereits eine Response erhalten hat. Ist
dies der Fall guckt die Registry in den Cache, um sich die dort Zwischengespeicherte
Response zu holen und diese an den Sender der Request zu leiten. Dabei “ersetzt” der
Cache den angesprochenen Microservice. Ist dies allerdings nicht der Fall wendet sich die
Registry weiter an den angesprochenen Microservice und speichert dessen Response in
den Cache.

Functional

e /CAF100/ The system must check if the requested resource is available in the
cache before relaying the request to a microservice.

e /CAF100/ The system must place the response of a microservice in the cache.

e /CAF200/ The cache must offer an option to save a response of a microservice.

e /CAF201/ The cache must offer an option to retrieve a saved response.

e /CAF202/ The cache must automatically delete a saved response if the given
timeout has been exceeded.

Non Functional

e /CANF100/ The system must answer faster with a cached response than if a
request is relayed to a microservice.

e /CANF200/ The cache must save at least 1000 Responses.

e /CANF201/ The cache must answer in at least 5ms.

User Stories

e /CAUS100/ Als Betreiber mochte ich Anfragen die das selbe Ergebnis erzeugen
abfangen und damit die Microservices entlasten.

e /CAUS101/ Als Betreiber mochte ich die Anfragen an die verschiedenen APIs
reduzieren um nicht in ein teureres Preispaket zu fallen.

Use Cases

Technologies

Fur Node.js existieren mehrere Caching Losungen. Bei den ersten recherchen fielen die
npm packages “memory-cache” und “node-cache” auf. Da “memory-cache” seit drei
Jahren kein Update bekommen hat, haben wir uns letzten endes fur “node-cache”
entschieden.

“node-cache” ist eine simple Caching Losung, die nach dem Key-Value prinzip
funktioniert. Der Funktionsumfang besteht dabei aus den Methoden “set”, “get” und
“delete”, wobei die Methode “set” einem zusatzlich erlaubt noch einen Timeout (“ttl” bzw.
“time to live” genannt) zu Ubergeben. Ist der Timeout Uberschritten, wird der Eintrag
automatisch aus dem Cache geldscht. Der Nachteil dieser Losung ist, dass nur eine
Millionen eintrage pro Cache Instanz eingetragen werden kénnen. Da aber gleich viel in

Seite 15/ 19

https://ds-maximum.de

Abschlussbericht zum Masterprojekt SS 2020

den Cache eingetragen wird, wie die Anzahl angebotener Funktionen aller Microservices,
wird dieser Nachteil nicht eintreffen.

Integration

Der Cache wird wie schon in Technologies beschrieben in Node.js verwendet. Spezifisch
wird der Cache dem ,reqgistry” Server hinzugeflugt.

Das Resultat (veranschaulicht im folgenden UML diagram) besteht darin, dass registry
versucht die angefragte Ressource aus dem Cache zu holen und gegebenfalls eine
Anfrage an den entsprechenden Microservice zu stellen, falls die Ressource nicht im
Cache vorhanden ist.

registry internal

gateway registry cache || Microservices
| |
|
|
|
|
|

——— |

|
| |
' Intention Request _ |

>

Cache Lookup

|
|
|
|
|
|
|
|
|
|
alt / [requested resource is not in cache]
| |
|

Service Request !

|
|
1
|
. cache |
gateway registry 8 microservices J

Resultate

Die momentane Implementierung ist wie zuvor beschrieben umgesetzt. Der einzige
Unterschied besteht darin, dass die Microservices die Maglichkeit besitzen, einen ttl
mitzuschicken. Wird kein ttl vom Microservice mitgeschickt, so wird ein Standard ttl
(momentan 30 Minuten) verwendet.

Wenn ein Microservice einen ttl mitschicken mochte, so muss dem ,,answer” Object
lediglich ein integer namens ,ttl“ hinzugefugt werden. Dieser reprasentiert die Anzahl an
Sekunden, wie lang zwischengespeichert werden soll.

Seite 16 / 19

Abschlussbericht zum Masterprojekt SS 2020

Update Wetter Microservice

Geoservice Erweiterung des Wetter Microservices

Geo Service

Motivation

Die OpenWeatherMap API akzeptiert nur Koordinaten (sprich Longitude & Latitude). Daher
muss die von Rasa uUbergebene Entity namens ,city” in Koordinaten umgewandelt
werden. Urspringlich wollten wir Rasa um diese Funktion erweitern, aus verschiedenen
Grunden haben wir uns letztenendes dafur entschieden, die Umwandlung im
Wetterservice durchzuflhren.

Requirements

Der Wetterservice soll um einen Service erweitert werden, der die ,city” Entity von Rasa
in Koordinaten umwandelt. Ist keine ,city” Entity vorhanden, soll der Wohnort des Users
(,home"“ Wert aus der Datenbank) verwendet werden. Falls weder Entity noch Wohnort
vorhanden ist, soll ,Berlin“ als Standardwert genutzt werden. Um diesen Wert
umzuwandeln muss der Service dann diesen Wert an die Nominatim API von
OpenStreetMap schicken und soll danach die Response auswerten. Erhalt der Service ein
leeres Array (sprich keine Koordinaten) oder einen Fehler, so soll eine Fehlermeldung
zurickgegeben werden.

Technologies

Um einen String in Koordinaten umzuwandeln, existieren mehrere Losungen. Bei den
Recherchen stachen vorallem ,Maps*“ von Google und ,,Nominatim“ von OpenStreetMaps
hervor. Im Endeffekt haben wir uns fur Nominatim entschieden, da diese eine Open-
Source Alternative zu Maps darstellt, durch die Offenheit einen niedrigschwelligen
Einstieg gewahrt und damit ein unkompliziertes Nutzen der APl ermdglicht. Des weiteren
bietet Nominatim zusatzlich einen Docker Container an und kann damit auch Lokal
benutzt werden.

“Nominatim” ist eine Geocoding Losung, mit der man einen beliebigen String in
Koordinaten umwandeln kann. Der String kann dabei zum Beispiel aus einem Stadthamen
oder einem Firmennamen bestehen. Der Service sucht anhand des Strings alle relevanten
Koordinaten aus deren Datenbank und gibt diese in einem Response zurlck. Des
weiteren, kann in der Anfrage bestimmt werden, in welchem Datenformat die Koordinaten
verpackt werden sollen. Wenn anhand des Strings keine Eintrage in der Datenbank
gefunden wurden, Ubergibt die API ein leeres Array.

Seite 17 /19

https://ds-maximum.de

Abschlussbericht zum Masterprojekt SS 2020

Integration

Wie schon in Motivation beschrieben, wird der Wetterservice Server um den Geoservice

erweitert.

Das Resultat (veranschaulicht im folgenden UML diagram) besteht darin, dass der
Wetterservice einen String an die Nominatim API schickt und den Response auswertet.

‘ weather-service ‘

|
Initial Reguest 1

‘ registry ‘

Y

Coordinates Call

weather-service internal

‘ geo-service ‘

‘ Nominatim API

| Final Response L_l
g -- - - - - - -

‘registry ‘ ‘weather-service ‘

Coordinates Result

>

API Log

kup

N,

I
|
|
|

‘ geo-service

‘ Nominatim API

Further Reading

- Nominatim API

Complete Sequence Diagram

weather-service internal

[registry] [routes/weather.js] [services/geoService.js] [services/weatherService.js] [services/generateResponse.js]
T T T

[Nominatim API] [OpenWeatherMap API

T
i Initial Request |

Coordinates Call

API Lookup

API Response

Coordinates Result

Weather Call

API Lookup

API Response

il

Generate Message Call

Response Message

II

T
i
I
i
i
i
i
|
I
Weather Result |
i
I
|
i
i
i
i

Final Response

[registw] [routes/weather.js] [services/geoService.js] [sewices/weatherService.js] [sen/ices/generateResponse.js]

[Nominatim API] [OpenWeatherMap API

Seite 18 /19

https://nominatim.org/

Abschlussbericht zum Masterprojekt SS 2020

Nutzungshinweis: Auf dieses vorliegende Schulungs- oder Beratungsdokument (ggf.)
erlangt der Mandant vertragsgemal ein nicht ausschliellliches, dauerhaftes,
unbeschranktes, unwiderrufliches und nicht Ubertragbares Nutzungsrecht. Eine
hierlber hinausgehende, nicht zuvor durch datenschutz-maximum bewilligte Nutzung
ist verboten und wird urheberrechtlich verfolgt.

Seite 19/ 19

https://ds-maximum.de

	[Abschlussbericht zum Masterprojekt SS 2020]
	Abschlussbericht zum Masterprojekt SS 2020
	Inhalt
	Abstract
	Uebersicht
	BeuthBot Master Repository
	Inbetriebnahme

	Deconcentrator-JS
	Database

	database
	Table of Content
	Motivation
	Requirements
	Functional
	Non Functional

	User Stories
	Use Cases
	Klassendiagramm User
	Technologies
	Integration
	Sequenzdiagramm mit angesteuertem Service
	Sequenzdiagramm nur Datenbank betreffend

	Nächsten Schritte
	Getting Started
	Windows

	API
	Request all Users
	Response
	Error

	Request User
	Reponse
	Error

	Add / Change Detail
	Request Body
	Reponse

	Delete all Details
	Reponse

	Delete Detail
	Reponse

	Database Microservice

	Database Microservice
	Inhaltsangabe
	Motivation
	Technologien
	Funktionsweise
	API
	Request
	Response

	RASA Trainieren
	Cache

	cache
	Motivation
	Requirements
	Functional
	Non Functional

	User Stories
	Use Cases
	Technologies
	Integration
	Resultate
	Update Wetter Microservice
	Geoservice Erweiterung des Wetter Microservices

	Geo Service
	Motivation
	Requirements
	Technologies
	Integration
	Further Reading
	Complete Sequence Diagram

