
 datenschutz-maximum Version 23.07.2020 12:41, Seite 1 / 18

https://wiki.ziemers.de/wiki/software/beuthbot/berichte/ss2020/abschluss?rev=1595500905 Gedruckt 01.02.2026 10:49

Abschlussbericht zum Masterprojekt SS 2020

Inhalt

Inhalt1.
Abstract2.
Uebersicht / Inbetriebnahme3.
Deconcentrator-JS4.
Database5.
Database Microservice6.
RASA Trainieren7.
Cache8.
Update Wetter Microservice9.

Abstract

Uebersicht

Die folgende Liste zeigt die Erweiterungen, welche in diesem Semester umgesetzt wurden.

BeuthBot Master Repository erstellt um die Organisation des Projektes zu vereinfachen.
Dokumentation des Master Repository, Erweiterung der bestehenden Dokumentation.
Ersetzen des Deconcentrators durch Deconcentrator-JS.
Einbauen einer Persistenz:

Realisierung eines passenden Models für die Persistierung der Daten.
Implementierung des Database-Controllers welcher eine MongoDB nutzt um die User
Daten zu speichern.
Implementierung des Database-Microservice welcher Datenbank-Anfragen auflöst und sie
durchsetzt.

Einbau Cache in Registry.5.
Umbau / Verbesserung des Weather-Microservice:6.

Formatierung der Antworten
Refactoring des bestehenden Codes
Einbau von zeitbezogenen Daten
Einbau von ortsbezogenen Daten

BeuthBot Master Repository

Wie dem Zwischenbericht entnommen werden kann, hatten wir am Anfang ziemliche
Schwierigkeiten das gesamte Projekt in Betrieb zu nehmen. Jedes Repository musste einzeln
gecloned werden und danach jede Komponente einzeln gestartet werden. Aus dieser Not haben
wir ein Master-Repository erstellt, welches die einzelnen Module als Git-Submodules beinhaltet.
So ist es nun möglich mit einem einzigen Befehl das gesamte Projekt zu laden. Das Projekt kann
unter dem Link https://github.com/beuthbot/beuthbot angeschaut werden.

https://github.com/beuthbot/beuthbot

Abschlussbericht zum Masterprojekt SS 2020

Seite 2 / 18

Inbetriebnahme

Deconcentrator-JS

Der Deconcentrator-JS übernimmt die gleiche Aufgabe wie der Deconcentrator und ersetzt
diesen. Die Entscheidung den Deconcentrator auszutauschen kam daher, dass es uns am
Anfang des Semester nicht möglich war, den Deconcentrator aus dem vorherigen Semester in
Betrieb zu nehmen. Auch nach langer Beschäftigung und der Hilfe eines Studenten aus dem
letzten Semester blieben Erfolge aus. Da dieses Projekt noch weiter entwickelt werden und
somit ein einfacher Einstieg und eine überschaubare Komplexität gewährleistet werden soll,
erschien es uns also sinnvoll den Deconcentrator durch den neuen Deconcentrator-JS
auszutauschen. Ein weiterer Faktor bestand darin, dass der alte Deconcentrator in Python
geschrieben war. Eine Vorgabe des Projekts ist aber die Verwendung der Programmiersprache
JavaScript. Mehr Informationen über den Deconcentrator-JS befinden sich hier im Wiki. Das
Projekt kann unter dem Link https://github.com/beuthbot/deconcentrator-js angeschaut werden.

Database

database

Table of Content

database1.
Table of Content2.
Motivation3.
Requirements4.

Functionala.
Non Functionalb.

User Stories5.
Use Cases6.
Klassendiagramm User7.
Technologies8.
Integration9.

Sequenzdiagramm mit angesteuertem Servicea.
Sequenzdiagramm nur Datenbank betreffendb.

Getting Started10.
Windowsa.

API11.
Request all Usersa.
Request Usersb.
Add / Change Detailc.
Delete all Detailsd.
Delete Detaile.

Motivation

Die Motivation hinter einer Datenbank im BeuthBot Projekt kommt durch das Problem,

https://github.com/beuthbot/deconcentrator-js
https://github.com/beuthbot/deconcentrator
https://wiki.ziemers.de/wiki/software/beuthbot/deconcentrator-js
https://github.com/beuthbot/deconcentrator-js

Abschlussbericht zum Masterprojekt SS 2020

Seite 3 / 18 https://ds-maximum.de

dass Benutzer ihre Wünsche immer wieder komplett ausführen müssen.
Als Beispiel: Wenn der Benutzer die Mensa nach veganen Gerichten anfragt, dann muss
er das bei der nächsten Anfrage wiederholen.
Die Datenbank soll das Problem beheben und den Benutzern die Möglichkeit bieten ihre
Vorlieben zu persistieren, ohne dass diese sich einen extra Account anlegen müssen.
Dabei muss darauf geachtet werden, dass in der Zukunft noch neue Services dazu
kommen können. Die Architektur und die Datenbank sollten so konzipiert werden, dass
neue Details die zu neuen Services gehören gespeichert werden können, ohne dass die
Datenbank dazu angepasst werden muss.

Requirements

Was soll die DB können?

Functional

/DBF100/ The system must be able to store details about a user.
/DBF101/ The system must be able to add a detail related to a user.
/DBF102/ The system must be able to change a detail related to a user.
/DBF103/ The system must be able to delete a detail related to a user.
/DBF104/ The system must be able to load all details about a user.
/DBF105/ The system must be able to delete all entries related to a user.
/DBF106/ It must be able to add new services and store related user details
without modifying the database.
/DBF200/ The database must store data related to a user.
/DBF201/ The database must be able to store a nickname related to a user.
/DBF202/ The database must be able to store a new detail about a user without
scaling the schema.
/DBF203/ The database must have a capacity of N.

Non Functional

/DBNF200/ The database must be easily scalable.
/DBNF201/ The database must be easy replaceable.

Referenz WS2019:

/NF500/ The system should comply with DSGVO guidelines
/NF501/ The system should be based on security standards
/NF502/ Databases should be protected from unwanted access
/NF503/ The databases should be password protected
/NF504/ The databases should be based on security standards
/NF600/ The system should restart the service independently in the event of a
service failure
/NF700/ The system should be well documented
/NF701/ The system should be easy to understand

User Stories

Abschlussbericht zum Masterprojekt SS 2020

Seite 4 / 18

"Als <Rolle> möchte ich <Ziel/Wunsch>, um <Nutzen>"

/DBUS100/ Als Student möchte ich meine Vorlieben speichern, damit ich sie nicht
immer wieder ausschreiben muss.
/DBUS101/ Als Student möchte ich nach einigen Anfragen, dass ich gefragt werde
ob ich meine Vorlieben speichern möchte, damit ich sie nicht immer wieder
ausschreiben muss.
/DBUS102/ Als Student möchte ich, dass der Bot mich wiedererkennt ohne einen
extra Account anlegen zu müssen, damit ich keine zusätzlichen persönlichen
Informationen preisgeben muss.
/DBUS103/ Als Student möchte ich dem Bot sagen können, dass er meine ALLE
meine Daten löschen soll.
/DBUS103/ Als Student möchte ich dem Bot sagen können, dass er ein Detail über
mich löschen soll.

Use Cases

BeuthBot

DBController

«Application»

Remember Nickname

Forget Nickname

Remember Detail

Forget Detail

Forget All Detail

Student

Klassendiagramm User

User

id: Int
nickname: String?
details: Dictionary<String, AnyObject>

Abschlussbericht zum Masterprojekt SS 2020

Seite 5 / 18 https://ds-maximum.de

Technologies

Durch die Anforderung, dass die Details, die zu einem User gespeichert werden sehr
variabel sein können, ist von einer relationalen Datenbank wie MySQL o.ä. abzuraten.
MongoDB ist eine dokumentenorientierte NoSQL-Datenbank. Mit ihr können Sammlungen
von JSON-ähnlichen Dokumenten erstellt und verwaltet werden. So können wir die Daten
zu einem User in komplexen Hierarchien verschachteln und erweitern ohne uns Gedanken
zu einem Tabellen-Schema machen zu müssen.

MongoDB Link
MongoDB Docker Image Link

docker-compose.yml

MongoDB (Container) DB Controller (Container)

Integration

BeuthBot

Persistence

gateway

database-containerDB_NAME
User

telgram-bot

Sequenzdiagramm mit angesteuertem Service

https://www.mongodb.com/de
https://hub.docker.com/_/mongo

Abschlussbericht zum Masterprojekt SS 2020

Seite 6 / 18

gateway

gateway

deconcentrator

deconcentrator

databasecontroller

databasecontroller

database

database

service

service

Request

Response (Intent + [Args]

Request User

Get User

Return User

Responses User

Request (User + [Args])

Answer

Sequenzdiagramm nur Datenbank betreffend

gateway

gateway

deconcentrator

deconcentrator

databasecontroller

databasecontroller

database

database

Request "Merke dir, dass ich vegetarisch esse."

Response (Intent + [Args])

Add Detail "vegetarisch"

Store "vegetarisch"

Result

GW: Result

Nächsten Schritte

Projekt Ordner und GitHub Repository erstellen
DB dem BeuthBot Projekt hinzufügen
Geignete Dockerfile formulieren mit MongoDB als Abhängigkeit
Datenbankcontroller erstellen, welcher ADD, REMOVE, CHANGE Befehle für Details
entgegen nimmt
Trainingsmodell für RASA für die Datenbank erstellen
Erste versuche mit dem Trainingsmodell von RASA

Abschlussbericht zum Masterprojekt SS 2020

Seite 7 / 18 https://ds-maximum.de

Getting Started

Die Datenbank wurde mit Docker erstellt. Um diese zum laufen zu bringen müssen
folgende Befehle ausgeführt werden:

clone the repository
git clone https://github.com/beuthbot/database.git

go to the folder
cd database

start the docker container to run the mongodb and its
corresponding database microservice
docker-compose up

Windows

Damit es auf Windows funktionieren kann müssen folgende Zeilen in der docker-
compose.yml Datei geändert werden:

...
 volumes:
 - mongodata:/data/db # needed for me to run container on
Windows 10
 #- ./../.database:/data/db # For Mac/Linux
...
needed for me to run container on Windows 10
volumes:
 mongodata:

Außerdem muss ein shared Folder existieren, welcher beispielsweise 'mongodb' genannt
werden muss, worin sich der Ordner 'data' mit den Unterordnern 'db' und 'configdb'
befindet. Die Ordnerstruktur sollte nun wie folgt aussehen:

E:\mongodb
 └───data
 ├───configdb
 └───db

API

Request all Users

Requests all Users in the collection

GET http://localhost:27000/users

Abschlussbericht zum Masterprojekt SS 2020

Seite 8 / 18

Response

{...},
{
 "id": 12345678,
 "nickname": "Alan",
 "details" : {
 "eating_habit" : "vegetarisch",
 "city" : "Berlin"
 }
},
{...}

Error

{
 "error": ...
}

Request User

GET http://localhost:27000/users/<id>

Reponse

Request a single user with the given id.

{
 "id": 12345678,
 "nickname": "Alan",
 "details" : {
 "eating_habit" : "vegetarisch",
 "city" : "Berlin"
 }
}

Error

{
 "error": ...
}

Abschlussbericht zum Masterprojekt SS 2020

Seite 9 / 18 https://ds-maximum.de

Add / Change Detail

Add/Change a Detaile to/from the User with the given id.

POST http://localhost:27000/users/<id>/detail

Request Body

{
 "detail": "eating_habit",
 "value": "vegetarisch"
}

Reponse

If the operation was successful the error will be set to null and the success will be set to
true. If the operation failed an error message will be set and the success will be set to
false.

{
 "error": null,
 "success": true | false
}

Delete all Details

Deletes all Details from the User with the given id

DELETE http://localhost:27000/user/<id>/detail?q=<value>

Reponse

If the operation was successful the error will be set to null and the success will be set to
true. If the operation failed an error message will be set and the success will be set to
false.

{
 "error": null,
 "success": true | false
}

Delete Detail

Abschlussbericht zum Masterprojekt SS 2020

Seite 10 / 18

Deletes one Detail from the User with the given id.

DELETE http://localhost:27000/user/<id>/detail?q=<value>

Reponse

If the operation was successful the error will be set to null and the success will be set to
true. If the operation failed an error message will be set and the success will be set to
false.

{
 "error": null,
 "success": true | false
}

Database Microservice

Database Microservice

Inhaltsangabe
Motivationa.
Technologienb.
Funktionsweisec.
APId.

Motivation

Um die Datenbank unabhängig von den anderen Microservices zu machen, mussten die
Datenbank Operationen ausgelagert werden. Das führte dazu, dass die Intents von Rasa
aufgelöst werden mussten, damit die richtigen Datenbank Operationen ausgeführt
werden können.

Technologien

Aufgebaut wurde dieser Microservice als REST-Server mit JavaScript. Die verwendeten
Technologien dafür sind:

NodeJS
ExpressJS
Axios

https://nodejs.org/en/
http://expressjs.com/
https://github.com/axios/axios

Abschlussbericht zum Masterprojekt SS 2020

Seite 11 / 18 https://ds-maximum.de

Funktionsweise

Registy

Registy

DatabaseMicroservice

DatabaseMicroservice

DatabaseController

DatabaseController

MongoDB

MongoDB

Send Intent

DatabaseOperation

DatabaseOperation

Response

Response

Response

Da dieser Microservice nur eine Route besitzt, über welche der Intent gesendet wird,
muss der Microservice dazu in der Lage sein, diesen Intent aufzulösen, sodass die richtige
Datenbank-Operation ausgeführt wird. Der Intent kommt ursprünglich von Rasa. Dieser
sieht wie folgt aus:

{
 "user": {
 "id": 12345,
 "telegram-id": 12345,
 "nickname": "Al",
 "details": {
 "home": "Bonn",
 "birthday": "23.06.1912",
 ...
 }
 },
 "intent":{
 "name":"database-set",
 "confidence":0.9998944998
 },
 "entities":[
 ...,
 {
 "start":26,
 "end":36,
 "value":"krebstiere",
 "entity":"allergen",
 "confidence":0.9999893608,
 "extractor":"CRFEntityExtractor"
 },
 {
 "start":37,

Abschlussbericht zum Masterprojekt SS 2020

Seite 12 / 18

 "end":51,
 "value":"alergisch bin.",
 "entity":"detail-allergic",
 "confidence":0,
 "extractor":"CRFEntityExtractor"
 },
 ...
],
 "text":"Merke dir, dass ich gegen Krebstiere alergisch bin.",
 ...
}

Durch den Intent, erfährt man, welche Operation ausgeführt werden soll und in den
Entities steht drin, was hinzugefügt/gelöscht/ausgelesen werden soll, sowie von welchem
User diese Operation ausgeführt werden soll. Die Entity mit dem höchsten Confidence-
Score ist die gewollte Anfrage an die Datenbank.

API

Request

POST https://localhost:<PORT>/resolve

oder

POST https://localhost:<PORT>/database

Response

{
 answer: {
 content: 'Deine Daten:\n' +
 '\n' +
 'Nickname: **DennySchumann**\n' +
 'Vorname: **Denny**\n' +
 'Nachname: **Schumann**\n' +
 '\n' +
 'home: **köln**\n',
 history: ['intent-resolve']
 }
}

RASA Trainieren

Neue Funktionen oder Microservices müssen dem BeuthBot „beigebracht“ werden.
Konkret für Rasa heißt das, dass es neue Trainings-Daten braucht aus denen das Model

Abschlussbericht zum Masterprojekt SS 2020

Seite 13 / 18 https://ds-maximum.de

generiert werden kann. Dieses Model nutzt Rasa zur Laufzeit um Anfragen zu
interpretieren. Am Anfang des Semesters haben wir bereits ein funktionierendes Model
und die dazugehörigen Trainings-Daten vorgefunden. Die Trainings-Daten wurde mit Hilfe
von Tracy generiert. Tracy wird mit einem Web-Interface bedient. Man kann dort Sätze
und Entities eingeben aus denen sich Trainings-Daten generieren lassen welche dann
exportiert werden können. Die Daten wurden damals manuell eingegeben. Als wir das
Model erweitern wollten, hätten wir diese Daten wieder manuell eingeben und ergänzen
müssen. Da dies nicht praktikabel erschien haben wir nach alternativen Lösungen gesucht
und eine gefunden. Chatito ist ein Tool mit dem wie bei Tracy Trainings-Daten generiert
werden können. Der Unterschied ist das bei Chatito die Daten nicht manuell über ein
Web-Interface eingeben werden, sondern mit einer DSL (Domain Specific Language) in
*.chatito-Dateien definiert werden. Chatito generiert dann aus einer beliebigen Anzahl
gegebener .chatito-Dateien die Trainings-Daten welche dann von Rasa genutzt werden
können um das Model zu erstellen. Die Chatito Dateien liegen im Rasa Projekt im Ordner
/training/app/input.

Eine Anleitung zum Trainieren eines neuen Models ist hier in diesem Wiki. Die gleiche
Anleitung und mehr Informationen befinden sich in der TRAINING.md Datei des Rasa
Projektes.

Cache

cache

Motivation

Der Cache soll vorrangig die Microservices entlasten, indem er die Response
zwischenspeichert und der Registry für eine gewisse Zeit zur Verfügung stellt.
Insbesondere der Service Weather ist davon betroffen, da dieser eine API von
OpenWeatherMap nutzt, welches pro Tag 4000 Wettervorhersagen treffen kann, sonst
wird dieser Kostenpflichtig bzw. kann dann keine Requests mehr entgegen nehmen.

Free Startup
40 USD /
month

Developer
180 USD /
month

Professional
470 USD / month

Enterprise
2.000 USD /
month

60
calls/minute
1,000,000
calls/month

600
calls/minute
10,000,000
calls/month

3,000
calls/minute
100,000,000
calls/month

30,000
calls/minute
1,000,000,000
calls/month

200,000
calls/minute
5,000,000,000
calls/month

https://github.com/YuukanOO/tracy
https://github.com/rodrigopivi/Chatito
https://wiki.ziemers.de/wiki/software/beuthbot/rasa/training
https://github.com/beuthbot/rasa/blob/master/.documentation/TRAINING.md
https://openweathermap.org/price

Abschlussbericht zum Masterprojekt SS 2020

Seite 14 / 18

Current
Weather
Minute
Forecast 1
hour∗
Hourly
Forecast 2
days∗
Daily Forecast
7 days∗
Historical
weather 5
days∗
Climatic Forecast
30 days
Bulk Download

Current
Weather
Minute
Forecast 1
hour∗∗
Hourly Forecast
2 days∗∗
Daily Forecast
16 days
Historical
weather 5
days∗∗
Climatic Forecast
30 days
Bulk Download

Current Weather
Minute Forecast
1 hour
Hourly Forecast
4 days
Daily Forecast
16 days
Historical
weather 5 days
Climatic
Forecast 30 days
Bulk Download

Current Weather
Minute Forecast 1
hour
Hourly Forecast 4
days
Daily Forecast 16
days
Historical weather
5 days
Climatic Forecast
30 days
Bulk Download

Current Weather
Minute forecast 1
hour
Hourly Forecast 4
days
Daily Forecast 16
days
Historical weather
5 days
Climatic Forecast
30 days
Bulk Download

Basic weather
maps
Historical maps

Basic weather
maps
Historical maps

Advanced
weather maps
Historical maps

Advanced weather
maps
Historical maps

Advanced weather
maps
Historical maps

Weather
triggers

Weather
triggers

Weather triggers Weather triggers Weather triggers

Weather
widgets

Weather
widgets

Weather widgets Weather widgets Weather widgets

Uptime 95% Uptime 95% Uptime 99.5% Uptime 99.5% Uptime 99.9%

∗ - 1,000 API calls per day by using One Call API
∗∗ - 2,000 API calls per day by using One Call API

Requirements

Die Registry soll Requests von dem Deconcentrator entgegennehmen und überprüfen, ob
diese Request innerhalb einer fest definierten Zeit bereits eine Response erhalten hat. Ist
dies der Fall guckt die Registry in den Cache, um sich die dort Zwischengespeicherte
Response zu holen und diese an den Sender der Request zu leiten. Dabei “ersetzt” der
Cache den angesprochenen Microservice. Ist dies allerdings nicht der Fall wendet sich die
Registry weiter an den angesprochenen Microservice und speichert dessen Response in
den Cache.

Functional

/CAF100/ The system must check if the requested resource is available in the
cache before relaying the request to a microservice.
/CAF100/ The system must place the response of a microservice in the cache.
/CAF200/ The cache must offer an option to save a response of a microservice.
/CAF201/ The cache must offer an option to retrieve a saved response.
/CAF202/ The cache must automatically delete a saved response if the given
timeout has been exceeded.

https://openweathermap.org/api/weather-map-2
https://openweathermap.org/api/weather-map-2
https://openweathermap.org/api/one-call-api
https://openweathermap.org/api/one-call-api
https://openweathermap.org/api/one-call-api
https://openweathermap.org/api/one-call-api
https://openweathermap.org/api/one-call-api
https://openweathermap.org/api/one-call-api
https://openweathermap.org/api/one-call-api
https://openweathermap.org/api/one-call-api
https://openweathermap.org/api/one-call-api#history
https://openweathermap.org/api/one-call-api#history
https://openweathermap.org/api/one-call-api#history
https://openweathermap.org/api/forecast30
https://openweathermap.org/api/forecast30
https://openweathermap.org/bulk
https://openweathermap.org/api/weathermaps
https://openweathermap.org/api/weathermaps
https://openweathermap.org/api/weather-map-2
https://openweathermap.org/api/weather-map-2
https://openweathermap.org/api/weather-map-2
https://openweathermap.org/triggers
https://openweathermap.org/triggers
https://openweathermap.org/widgets-constructor
https://openweathermap.org/widgets-constructor

Abschlussbericht zum Masterprojekt SS 2020

Seite 15 / 18 https://ds-maximum.de

Non Functional

/CANF100/ The system must answer faster with a cached response than if a
request is relayed to a microservice.
/CANF200/ The cache must save at least 1000 Responses.
/CANF201/ The cache must answer in at least 5ms.

User Stories

/CAUS100/ Als Betreiber möchte ich Anfragen die das selbe Ergebnis erzeugen
abfangen und damit die Microservices entlasten.
/CAUS101/ Als Betreiber möchte ich die Anfragen an die verschiedenen APIs
reduzieren um nicht in ein teureres Preispaket zu fallen.

Use Cases

Technologies

Für Node.js existieren mehrere Caching Lösungen. Bei den ersten recherchen fielen die
npm packages “memory-cache” und “node-cache” auf. Da “memory-cache” seit drei
Jahren kein Update bekommen hat, haben wir uns letzten endes für “node-cache”
entschieden.

“node-cache” ist eine simple Caching Lösung, die nach dem Key-Value prinzip
funktioniert. Der Funktionsumfang besteht dabei aus den Methoden “set”, “get” und
“delete”, wobei die Methode “set” einem zusätzlich erlaubt noch einen Timeout (“ttl” bzw.
“time to live” genannt) zu übergeben. Ist der Timeout überschritten, wird der Eintrag
automatisch aus dem Cache gelöscht. Der Nachteil dieser Lösung ist, dass nur eine
Millionen einträge pro Cache Instanz eingetragen werden können. Da aber gleich viel in
den Cache eingetragen wird, wie die Anzahl angebotener Funktionen aller Microservices,
wird dieser Nachteil nicht eintreffen.

Integration

Der Cache wird wie schon in Technologies beschrieben in Node.js verwendet. Spezifisch
wird der Cache dem „registry“ Server hinzugefügt.

Das Resultat (veranschaulicht im folgenden UML diagram) besteht darin, dass registry
versucht die angefragte Ressource aus dem Cache zu holen und gegebenfalls eine
Anfrage an den entsprechenden Microservice zu stellen, falls die Ressource nicht im
Cache vorhanden ist.

Abschlussbericht zum Masterprojekt SS 2020

Seite 16 / 18

registry internal

gateway

gateway

registry

registry

cache

cache

microservices

microservices

Intention Request

Cache Lookup

Cache Response

alt [requested resource is not in cache]

Service Request

Service Response

Cache Persist

Final Response

Resultate

Die momentane Implementierung ist wie zuvor beschrieben umgesetzt. Der einzige
Unterschied besteht darin, dass die Microservices die Möglichkeit besitzen, einen ttl
mitzuschicken. Wird kein ttl vom Microservice mitgeschickt, so wird ein Standard ttl
(momentan 30 Minuten) verwendet.

Wenn ein Microservice einen ttl mitschicken möchte, so muss dem „answer“ Object
lediglich ein integer namens „ttl“ hinzugefügt werden. Dieser repräsentiert die Anzahl an
Sekunden, wie lang zwischengespeichert werden soll.

Update Wetter Microservice

Geoservice Erweiterung des Wetter Microservices

Geo Service

Motivation

Die OpenWeatherMap API akzeptiert nur Koordinaten (sprich Longitude & Latitude). Daher
muss die von Rasa übergebene Entity namens „city“ in Koordinaten umgewandelt
werden. Ursprünglich wollten wir Rasa um diese Funktion erweitern, aus verschiedenen
Gründen haben wir uns letztenendes dafür entschieden, die Umwandlung im

Abschlussbericht zum Masterprojekt SS 2020

Seite 17 / 18 https://ds-maximum.de

Wetterservice durchzuführen.

Requirements

Der Wetterservice soll um einen Service erweitert werden, der die „city“ Entity von Rasa
in Koordinaten umwandelt. Ist keine „city“ Entity vorhanden, soll der Wohnort des Users
(„home“ Wert aus der Datenbank) verwendet werden. Falls weder Entity noch Wohnort
vorhanden ist, soll „Berlin“ als Standardwert genutzt werden. Um diesen Wert
umzuwandeln muss der Service dann diesen Wert an die Nominatim API von
OpenStreetMap schicken und soll danach die Response auswerten. Erhält der Service ein
leeres Array (sprich keine Koordinaten) oder einen Fehler, so soll eine Fehlermeldung
zurückgegeben werden.

Technologies

Um einen String in Koordinaten umzuwandeln, existieren mehrere Lösungen. Bei den
Recherchen stachen vorallem „Maps“ von Google und „Nominatim“ von OpenStreetMaps
hervor. Im Endeffekt haben wir uns für Nominatim entschieden, da diese eine Open-
Source Alternative zu Maps darstellt, durch die Offenheit einen niedrigschwelligen
Einstieg gewährt und damit ein unkompliziertes Nutzen der API ermöglicht. Des weiteren
bietet Nominatim zusätzlich einen Docker Container an und kann damit auch Lokal
benutzt werden.

“Nominatim” ist eine Geocoding Lösung, mit der man einen beliebigen String in
Koordinaten umwandeln kann. Der String kann dabei zum Beispiel aus einem Stadtnamen
oder einem Firmennamen bestehen. Der Service sucht anhand des Strings alle relevanten
Koordinaten aus deren Datenbank und gibt diese in einem Response zurück. Des
weiteren, kann in der Anfrage bestimmt werden, in welchem Datenformat die Koordinaten
verpackt werden sollen. Wenn anhand des Strings keine Einträge in der Datenbank
gefunden wurden, übergibt die API ein leeres Array.

Integration

Wie schon in Motivation beschrieben, wird der Wetterservice Server um den Geoservice
erweitert.

Das Resultat (veranschaulicht im folgenden UML diagram) besteht darin, dass der
Wetterservice einen String an die Nominatim API schickt und den Response auswertet.

Abschlussbericht zum Masterprojekt SS 2020

Seite 18 / 18

weather-service internal

registry

registry

weather-service

weather-service

geo-service

geo-service

Nominatim API

Nominatim API

Initial Request

Coordinates Call

API Lookup

API Response

Coordinates Result

Weather API Lookup

Final Response

Further Reading

- Nominatim API

Nutzungshinweis: Auf dieses vorliegende Schulungs- oder Beratungsdokument (ggf.)
erlangt der Mandant vertragsgemäß ein nicht ausschließliches, dauerhaftes,
unbeschränktes, unwiderrufliches und nicht übertragbares Nutzungsrecht. Eine
hierüber hinausgehende, nicht zuvor durch datenschutz-maximum bewilligte Nutzung
ist verboten und wird urheberrechtlich verfolgt.

https://nominatim.org/

	[Abschlussbericht zum Masterprojekt SS 2020]
	Abschlussbericht zum Masterprojekt SS 2020
	Inhalt
	Abstract
	Uebersicht
	BeuthBot Master Repository
	Inbetriebnahme

	Deconcentrator-JS
	Database

	database
	Table of Content
	Motivation
	Requirements
	Functional
	Non Functional

	User Stories
	Use Cases
	Klassendiagramm User
	Technologies
	Integration
	Sequenzdiagramm mit angesteuertem Service
	Sequenzdiagramm nur Datenbank betreffend

	Nächsten Schritte
	Getting Started
	Windows

	API
	Request all Users
	Response
	Error

	Request User
	Reponse
	Error

	Add / Change Detail
	Request Body
	Reponse

	Delete all Details
	Reponse

	Delete Detail
	Reponse

	Database Microservice

	Database Microservice
	Inhaltsangabe
	Motivation
	Technologien
	Funktionsweise
	API
	Request
	Response

	RASA Trainieren
	Cache

	cache
	Motivation
	Requirements
	Functional
	Non Functional

	User Stories
	Use Cases
	Technologies
	Integration
	Resultate
	Update Wetter Microservice
	Geoservice Erweiterung des Wetter Microservices

	Geo Service
	Motivation
	Requirements
	Technologies
	Integration
	Further Reading

