ﬁ datenschutz-maximum Version 23.07.2020 01:48, Seite 1/ 14

Abschlussbericht zum Masterprojekt SS 2020

Inhalt
1. Inhalt
2. Abstract
3. Uebersicht / Inbetriebnahme
4. Deconcentrator-)S
5. Database
6. Database Microservice
7. RASA Trainieren
8. Cache
9. Update Wetter Microservice

Abstract

Uebersicht / Inbetriebnahme

Deconcentrator-JS

Der Deconcentrator-JS Ubernimmt die gleiche Aufgabe wie der Deconcentrator und ersetzt diesen. Die
Entscheidung den Deconcentrator auszutauschen kam daher, dass es uns am Anfang des Semester
nicht méglich war, den Deconcentrator aus dem vorherigen Semester in Betrieb zu nehmen. Auch
nach langer Beschaftigung und der Hilfe eines Studenten aus dem letzten Semester blieben Erfolge
aus. Da dieses Projekt noch weiter entwickelt werden und somit ein einfacher Einstieg und eine
Uberschaubare Komplexitat gewahrleistet werden soll, erschien es uns also sinnvoll den
Deconcentrator durch den neuen Deconcentrator-JS auszutauschen. Ein weiterer Faktor bestand
darin, dass der alte Deconcentrator in Python geschrieben war. Eine Vorgabe des Projekts ist aber die
Verwendung der Programmiersprache JavaScript. Mehr Informationen Uber den Deconcentrator-JS
befinden sich hier im Wiki. Das Projekt kann unter dem Link
https://github.com/beuthbot/deconcentrator-js angeschaut werden.

Database

database

Table of Content

1. database

2. Table of Content

3. Motivation

4. Requirements
a. Functional

https://wiki.ziemers.de/wiki/software/beuthbot/berichte/ss2020/abschluss?rev=1595461688 Gedruckt 01.02.2026 10:56

https://github.com/beuthbot/deconcentrator-js
https://github.com/beuthbot/deconcentrator
https://wiki.ziemers.de/wiki/software/beuthbot/deconcentrator-js
https://github.com/beuthbot/deconcentrator-js

Abschlussbericht zum Masterprojekt SS 2020

O 00 N4 O U

10

11.

b. Non Functional
User Stories
Use Cases
Klassendiagramm User
Technologies
Integration
a. Sequenzdiagramm mit angesteuertem Service
b. Sequenzdiagramm nur Datenbank betreffend
Getting Started
a. Windows
API
Request all Users
Request Users
Add / Change Detail
Delete all Details
Delete Detail

Qoo o

Motivation

Die Motivation hinter einer Datenbank im BeuthBot Projekt kommt durch das Problem, dass
Benutzer ihre Winsche immer wieder komplett ausfihren mussen.

Als Beispiel: Wenn der Benutzer die Mensa nach veganen Gerichten anfragt, dann muss er das
bei der nachsten Anfrage wiederholen.

Die Datenbank soll das Problem beheben und den Benutzern die Méglichkeit bieten ihre
Vorlieben zu persistieren, ohne dass diese sich einen extra Account anlegen mussen. Dabei
muss darauf geachtet werden, dass in der Zukunft noch neue Services dazu kommen kénnen.
Die Architektur und die Datenbank sollten so konzipiert werden, dass neue Details die zu neuen
Services gehoren gespeichert werden konnen, ohne dass die Datenbank dazu angepasst
werden muss.

Requirements

Was soll die DB kébnnen?

Functional

e /DBF100/ The system must be able to store details about a user.

e /DBF101/ The system must be able to add a detail related to a user.

e /DBF102/ The system must be able to change a detail related to a user.

e /DBF103/ The system must be able to delete a detail related to a user.

e /DBF104/ The system must be able to load all details about a user.

e /DBF105/ The system must be able to delete all entries related to a user.

e /DBF106/ It must be able to add new services and store related user details without
modifying the database.

e /DBF200/ The database must store data related to a user.

e /DBF201/ The database must be able to store a nickname related to a user.

e /DBF202/ The database must be able to store a new detail about a user without scaling
the schema.

e /DBF203/ The database must have a capacity of N.

Seite 2/ 14

Abschlussbericht zum Masterprojekt SS 2020

Non Functional

e /DBNF200/ The database must be easily scalable.
e /DBNF201/ The database must be easy replaceable.

Referenz WS2019:

e /NF500/ The system should comply with DSGVO guidelines

e /NF501/ The system should be based on security standards

e /NF502/ Databases should be protected from unwanted access

e /NF503/ The databases should be password protected

e /NF504/ The databases should be based on security standards

e /NF600/ The system should restart the service independently in the event of a service
failure

e /NF700/ The system should be well documented

e /NF701/ The system should be easy to understand

User Stories

"Als <Rolle> mochte ich <Ziel/Wunsch>, um <Nutzen>"

e /DBUS100/ Als Student mdchte ich meine Vorlieben speichern, damit ich sie nicht immer
wieder ausschreiben muss.

e /DBUS101/ Als Student méchte ich nach einigen Anfragen, dass ich gefragt werde ob ich
meine Vorlieben speichern mochte, damit ich sie nicht immer wieder ausschreiben muss.

e /DBUS102/ Als Student mochte ich, dass der Bot mich wiedererkennt ohne einen extra
Account anlegen zu mussen, damit ich keine zusatzlichen personlichen Informationen
preisgeben muss.

e /DBUS103/ Als Student mochte ich dem Bot sagen kdnnen, dass er meine ALLE meine
Daten I6schen soll.

e /DBUS103/ Als Student mdchte ich dem Bot sagen kdnnen, dass er ein Detail Uber mich
|6schen soll.

Use Cases

Seite 3/14 https://ds-maximum.de

Abschlussbericht zum Masterprojekt SS 2020

BeuthBot \

Forget All Detail
_Forget Detail

/
Student \

Forget Nickname

Remember Detail

Remember Nickname

«Application»

DBController

Klassendiagramm User

@ User
id: Int

nickname: String?
details: Dictionary<String, AnyObject>

Technologies

Durch die Anforderung, dass die Details, die zu einem User gespeichert werden sehr variabel
sein kénnen, ist von einer relationalen Datenbank wie MySQL o.a. abzuraten. MongoDB ist eine
dokumentenorientierte NoSQL-Datenbank. Mit ihr kbnnen Sammlungen von JSON-ahnlichen

Dokumenten erstellt und verwaltet werden. So konnen wir die Daten zu einem User in

komplexen Hierarchien verschachteln und erweitern ohne uns Gedanken zu einem Tabellen-

Schema machen zu mussen.

e MongoDB Link
e MongoDB Docker Image Link

docker-compose.yml \

g]
MongoDB (Container)

DB Controller (Container)

g]

Seite 4 / 14

https://www.mongodb.com/de
https://hub.docker.com/_/mongo

Abschlussbericht zum Masterprojekt SS 2020

Integration

BeuthBot

J

Persistence \

DB_NAME - database-container

User / /

telgram-bot t

Sequenzdiagramm mit angesteuertem Service

)

‘deconcentrator ‘databasecontroller ‘ databace
|

: Request !

(...
Request User

N,
>

| |

I »~ \[\[
Response (Intent + [Args] u 1 1

{ {

| |

|

|

|

Get User

Responses User

Request (User + [Args])

|
deconcentrator Hdatabasecontroller datab@e

Sequenzdiagramm nur Datenbank betreffend

Seite 5/ 14 https://ds-maximum.de

Abschlussbericht zum Masterprojekt SS 2020

‘deconcentrator ‘ ‘databasecontroller ‘ database
|

Request "Merke dir, dass ich vegetarisch esse." !

e T e

[

|

> |

Response (Intent + [Args]) u :
|

Add Detail "vegetarisch" !

GW: Result

deconcentrator Hdatabasecontroller ‘ dataEbase

Nachsten Schritte

Projekt Ordner und GitHub Repository erstellen

DB dem BeuthBot Projekt hinzufligen

Geignete Dockerfile formulieren mit MongoDB als Abhangigkeit
Datenbankcontroller erstellen, welcher ADD, REMOVE, CHANGE Befehle fir Details
entgegen nimmt

e Trainingsmodell fir RASA flir die Datenbank erstellen

e Erste versuche mit dem Trainingsmodell von RASA

Getting Started

Die Datenbank wurde mit Docker erstellt. Um diese zum laufen zu bringen mussen folgende
Befehle ausgefuhrt werden:

clone the repository
git clone https://github.com/beuthbot/database.git

go to the folder
cd database

start the docker container to run the mongodb and its corresponding

database microservice
docker-compose up

Windows

Damit es auf Windows funktionieren kann mussen folgende Zeilen in der docker-compose.yml
Datei gedndert werden:

volumes:
- mongodata:/data/db # needed for me to run container on Windows

Seite 6/ 14

Abschlussbericht zum Masterprojekt SS 2020

10
#- ./../.database:/data/db # For Mac/Linux

needed for me to run container on Windows 10
volumes:
mongodata:

Aullerdem muss ein shared Folder existieren, welcher beispielsweise 'mongodb' genannt
werden muss, worin sich der Ordner 'data’ mit den Unterordnern 'db' und ‘configdb' befindet.
Die Ordnerstruktur sollte nun wie folgt aussehen:

E:\mongodb
L—data

——configdb
—db

API

Request all Users

Requests all Users in the collection

GET http://localhost:27000/users

Response
{...},
{
"id": 12345678,
"nickname": "Alan",
"details" : {
"eating habit" : "vegetarisch",
"city" : "Berlin"
}
},
{...}
Error
{
“error":
}

Seite 7/ 14 https://ds-maximum.de

Abschlussbericht zum Masterprojekt SS 2020

Request User

GET http://localhost:27000/users/<id>

Reponse

Request a single user with the given id.

{
"id": 12345678,

"nickname": "Alan",
"details" : {
"eating habit" : "vegetarisch",
"city" : "Berlin"
}
}

Error

{

"error":

}

Add / Change Detail

Add/Change a Detaile to/from the User with the given id.

POST http://localhost:27000/users/<id>/detail

Request Body

{
"detail": "eating habit",
"value": "vegetarisch"

}

Reponse

If the operation was successful the error will be set to null and the success will be set to true. If
the operation failed an error message will be set and the success will be set to false.

{

"error": null,

Seite 8 /14

Abschlussbericht zum Masterprojekt SS 2020

"success": true | false

Delete all Details

Deletes all Details from the User with the given id

DELETE http://localhost:27000/user/<id>/detail?qg=<value>

Reponse

If the operation was successful the error will be set to null and the success will be set to true. If
the operation failed an error message will be set and the success will be set to false.

{
"error": null,
"success": true | false
}
Delete Detail

Deletes one Detail from the User with the given id.

DELETE http://localhost:27000/user/<id>/detail?q=<value>

Reponse

If the operation was successful the error will be set to null and the success will be set to true. If
the operation failed an error message will be set and the success will be set to false.

{

"error": null,
"success": true | false

Database Microservice

RASA Trainieren

Neue Funktionen oder Microservices mussen dem BeuthBot ,beigebracht” werden. Konkret fur
Rasa heifRt das, dass es neue Trainings-Daten braucht aus denen das Model generiert werden
kann. Dieses Model nutzt Rasa zur Laufzeit um Anfragen zu interpretieren. Am Anfang des
Semesters haben wir bereits ein funktionierendes Model und die dazugehdrigen Trainings-Daten

Seite 9/ 14 https://ds-maximum.de

Abschlussbericht zum Masterprojekt SS 2020

vorgefunden. Die Trainings-Daten wurde mit Hilfe von Tracy generiert. Tracy wird mit einem
Web-Interface bedient. Man kann dort Satze und Entities eingeben aus denen sich Trainings-
Daten generieren lassen welche dann exportiert werden kénnen. Die Daten wurden damals
manuell eingegeben. Als wir das Model erweitern wollten, hatten wir diese Daten wieder
manuell eingeben und erganzen mussen. Da dies nicht praktikabel erschien haben wir nach
alternativen Losungen gesucht und eine gefunden. Chatito ist ein Tool mit dem wie bei Tracy
Trainings-Daten generiert werden kénnen. Der Unterschied ist das bei Chatito die Daten nicht
manuell Uber ein Web-Interface eingeben werden, sondern mit einer DSL (Domain Specific
Language) in *.chatito-Dateien definiert werden. Chatito generiert dann aus einer beliebigen
Anzahl gegebener .chatito-Dateien die Trainings-Daten welche dann von Rasa genutzt werden
konnen um das Model zu erstellen. Die Chatito Dateien liegen im Rasa Projekt im Ordner
[training/app/input.

Eine Anleitung zum Trainieren eines neuen Models ist hier in diesem Wiki. Die gleiche Anleitung

und mehr Informationen befinden sich in der TRAINING.md Datei des Rasa Projektes.

Cache

cache

Motivation

Der Cache soll vorrangig die Microservices entlasten, indem er die Response zwischenspeichert
und der Registry fir eine gewisse Zeit zur Verfigung stellt. Insbesondere der Service Weather
ist davon betroffen, da dieser eine APl von OpenWeatherMap nutzt, welches pro Tag 4000
Wettervorhersagen treffen kann, sonst wird dieser Kostenpflichtig bzw. kann dann keine
Requests mehr entgegen nehmen.

Free Professional

Startup Developer
40 USD / month 180 USD / month 470 USD / month

Enterprise
2.000 USD / month

60 calls/minute 600 3,000 30,000 200,000

1,000,000 calls/minute calls/minute calls/minute calls/minute

calls/month 10,000,000 100,000,000 1,000,000,000 5,000,000,000
calls/month calls/month calls/month calls/month

Current Weather
Minute Forecast

Current Weather Current Weather Current Weather
Minute Forecast Minute Forecast 1 Minute Forecast 1

Current Weather
Minute forecast 1

1 hourx 1 hours % hour hour hour

Hourly Forecast Hourly Forecast Hourly Forecast 4 Hourly Forecast 4 Hourly Forecast 4

2 days* 2 days** days days days

Daily Forecast 7 Daily Forecast Daily Forecast 16 Daily Forecast 16 Daily Forecast 16
days* 16 days days days days

Historical Historical Historical weather Historical weather 5 Historical weather 5
weather 5 weather 5 5 days days days

days* days* x Climatic Forecast Climatic Forecast 30 Climatic Forecast 30
Climatic Forecast Climatic Forecast 30 days days days

30 days 30 days Bulk Download Bulk Download Bulk Download

Bulk Download Bulk Download

Seite 10/ 14

https://github.com/YuukanOO/tracy
https://github.com/rodrigopivi/Chatito
https://wiki.ziemers.de/wiki/software/beuthbot/rasa/training
https://github.com/beuthbot/rasa/blob/master/.documentation/TRAINING.md
https://openweathermap.org/price
https://openweathermap.org/api/weather-map-2
https://openweathermap.org/api/one-call-api
https://openweathermap.org/api/one-call-api
https://openweathermap.org/api/one-call-api
https://openweathermap.org/api/one-call-api
https://openweathermap.org/api/one-call-api
https://openweathermap.org/api/one-call-api
https://openweathermap.org/api/one-call-api#history
https://openweathermap.org/api/one-call-api#history
https://openweathermap.org/api/one-call-api#history
https://openweathermap.org/api/forecast30
https://openweathermap.org/api/forecast30
https://openweathermap.org/bulk

Abschlussbericht zum Masterprojekt SS 2020

Basic weather Basic weather Advanced Advanced weather Advanced weather
maps maps weather maps maps maps

Historical maps Historical maps Historical maps Historical maps Historical maps
Weather Weather triggers Weather triggers Weather triggers ~ Weather triggers
triggers

Weather Weather widgets Weather widgets Weather widgets = Weather widgets
widgets

Uptime 95% Uptime 95% Uptime 99.5% Uptime 99.5% Uptime 99.9%

* - 1,000 API calls per day by using One Call API
%% - 2,000 API calls per day by using One Call API

Requirements

Die Registry soll Requests von dem Deconcentrator entgegennehmen und Uberprifen, ob diese
Request innerhalb einer fest definierten Zeit bereits eine Response erhalten hat. Ist dies der Fall
guckt die Registry in den Cache, um sich die dort Zwischengespeicherte Response zu holen und
diese an den Sender der Request zu leiten. Dabei “ersetzt” der Cache den angesprochenen
Microservice. Ist dies allerdings nicht der Fall wendet sich die Registry weiter an den
angesprochenen Microservice und speichert dessen Response in den Cache.

Functional

e /CAF100/ The system must check if the requested resource is available in the cache
before relaying the request to a microservice.

e /CAF100/ The system must place the response of a microservice in the cache.

e /CAF200/ The cache must offer an option to save a response of a microservice.

e /CAF201/ The cache must offer an option to retrieve a saved response.

e /CAF202/ The cache must automatically delete a saved response if the given timeout
has been exceeded.

Non Functional

e /CANF100/ The system must answer faster with a cached response than if a request is
relayed to a microservice.

e /CANF200/ The cache must save at least 1000 Responses.

e /CANF201/ The cache must answer in at least 5ms.

User Stories

e /CAUS100/ Als Betreiber méchte ich Anfragen die das selbe Ergebnis erzeugen abfangen
und damit die Microservices entlasten.

e /CAUS101/ Als Betreiber mochte ich die Anfragen an die verschiedenen APIs reduzieren
um nicht in ein teureres Preispaket zu fallen.

Use Cases

Seite 11/ 14 https://ds-maximum.de

https://openweathermap.org/api/weathermaps
https://openweathermap.org/api/weathermaps
https://openweathermap.org/api/weather-map-2
https://openweathermap.org/api/weather-map-2
https://openweathermap.org/api/weather-map-2
https://openweathermap.org/triggers
https://openweathermap.org/triggers
https://openweathermap.org/widgets-constructor
https://openweathermap.org/widgets-constructor

Abschlussbericht zum Masterprojekt SS 2020

Technologies

FUr Node.js existieren mehrere Caching Losungen. Bei den ersten recherchen fielen die npm
packages “memory-cache” und “node-cache” auf. Da “memory-cache” seit drei Jahren kein
Update bekommen hat, haben wir uns letzten endes fir “node-cache” entschieden.

“node-cache” ist eine simple Caching Losung, die nach dem Key-Value prinzip funktioniert. Der
Funktionsumfang besteht dabei aus den Methoden “set”, “get” und “delete”, wobei die
Methode “set” einem zusatzlich erlaubt noch einen Timeout (“ttl” bzw. “time to live” genannt)
zu Ubergeben. Ist der Timeout Uberschritten, wird der Eintrag automatisch aus dem Cache
geléscht. Der Nachteil dieser Losung ist, dass nur eine Millionen eintrage pro Cache Instanz
eingetragen werden kdénnen. Da aber gleich viel in den Cache eingetragen wird, wie die Anzahl
angebotener Funktionen aller Microservices, wird dieser Nachteil nicht eintreffen.

Integration

Der Cache wird wie schon in Technologies beschrieben in Node.js verwendet. Spezifisch wird
der Cache dem ,registry” Server hinzugefugt.

Das Resultat (veranschaulicht im folgenden UML diagram) besteht darin, dass registry versucht
die angefragte Ressource aus dem Cache zu holen und gegebenfalls eine Anfrage an den
entsprechenden Microservice zu stellen, falls die Ressource nicht im Cache vorhanden ist.

registry internal

gateway registry cache || Microservices J
| |
|
|
|
|
|

|
' Intention Request |

>

Cache Lookup

Cache Response u
(..............................

|
|
|
|
|
|
|
|
l
alt /' [requested resource is not in cache]
| |
Service Request ! !

|
|
|
|
; cache
gateway registry 8 microservices

———— |

Seite 12/ 14

Abschlussbericht zum Masterprojekt SS 2020

Resultate

Die momentane Implementierung ist wie zuvor beschrieben umgesetzt. Der einzige Unterschied
besteht darin, dass die Microservices die Mdglichkeit besitzen, einen ttl mitzuschicken. Wird
kein ttl vom Microservice mitgeschickt, so wird ein Standard ttl (momentan 30 Minuten)
verwendet.

Wenn ein Microservice einen ttl mitschicken mdchte, so muss dem ,.answer” Object lediglich ein
integer namens ,ttl“ hinzugefigt werden. Dieser reprasentiert die Anzahl an Sekunden, wie
lang zwischengespeichert werden soll.

Update Wetter Microservice

Geoservice Erweiterung des Wetter Microservices

Geo Service

Motivation

Die OpenWeatherMap API akzeptiert nur Koordinaten (sprich Longitude & Latitude). Daher muss
die von Rasa Ubergebene Entity namens ,,city” in Koordinaten umgewandelt werden.
Ursprunglich wollten wir Rasa um diese Funktion erweitern, aus verschiedenen Grunden haben
wir uns letztenendes daflir entschieden, die Umwandlung im Wetterservice durchzufuhren.

Requirements

Der Wetterservice soll um einen Service erweitert werden, der die , city” Entity von Rasa in
Koordinaten umwandelt. Ist keine ,city” Entity vorhanden, soll der Wohnort des Users (,home*“
Wert aus der Datenbank) verwendet werden. Falls weder Entity noch Wohnort vorhanden ist,
soll ,Berlin“ als Standardwert genutzt werden. Um diesen Wert umzuwandeln muss der Service
dann diesen Wert an die Nominatim API von OpenStreetMap schicken und soll danach die
Response auswerten. Erhalt der Service ein leeres Array (sprich keine Koordinaten) oder einen
Fehler, so soll eine Fehlermeldung zuruckgegeben werden.

Technologies

Um einen String in Koordinaten umzuwandeln, existieren mehrere Losungen. Bei den
Recherchen stachen vorallem ,,Maps“ von Google und ,,Nominatim“ von OpenStreetMaps
hervor. Im Endeffekt haben wir uns fur Nominatim entschieden, da diese eine Open-Source
Alternative zu Maps darstellt, durch die Offenheit einen niedrigschwelligen Einstieg gewahrt und
damit ein unkompliziertes Nutzen der APl ermdglicht. Des weiteren bietet Nominatim zusatzlich
einen Docker Container an und kann damit auch Lokal benutzt werden.

“Nominatim” ist eine Geocoding Ldsung, mit der man einen beliebigen String in Koordinaten

Seite 13/ 14 https://ds-maximum.de

Abschlussbericht zum Masterprojekt SS 2020

umwandeln kann. Der String kann dabei zum Beispiel aus einem Stadtnamen oder einem
Firmennamen bestehen. Der Service sucht anhand des Strings alle relevanten Koordinaten aus
deren Datenbank und gibt diese in einem Response zurtick. Des weiteren, kann in der Anfrage
bestimmt werden, in welchem Datenformat die Koordinaten verpackt werden sollen. Wenn
anhand des Strings keine Eintrage in der Datenbank gefunden wurden, Ubergibt die API ein
leeres Array.

Integration

Wie schon in Motivation beschrieben, wird der Wetterservice Server um den Geoservice
erweitert.

Das Resultat (veranschaulicht im folgenden UML diagram) besteht darin, dass der Wetterservice
einen String an die Nominatim API schickt und den Response auswertet.

weather-service internal
‘ registry ‘ ‘ weather-service ‘ ‘ geo-service ‘ ‘ Nominatim API
| | | |
| Initial Reguest | | |
I r | |
1 Coordinates Call 1 1
| > |
1 API Lookup 1
| >
l API Response U
ey ST [
l Coordinates Result l
5 [I
Weather API Lookup
I f] I
i _ Final Response u w w
e - --- - - -- - - - (e [[
| | | |
‘ registry ‘ ‘ weather-service ‘ ‘ geo-service ‘ ‘ Nominatim API

Further Reading

- Nominatim API

Nutzungshinweis: Auf dieses vorliegende Schulungs- oder Beratungsdokument (ggf.) erlangt
der Mandant vertragsgemaR ein nicht ausschlieBliches, dauerhaftes, unbeschranktes,
unwiderrufliches und nicht Ubertragbares Nutzungsrecht. Eine hieriber hinausgehende, nicht
zuvor durch datenschutz-maximum bewilligte Nutzung ist verboten und wird urheberrechtlich
verfolgt.

Seite 14/ 14

https://nominatim.org/

	[Abschlussbericht zum Masterprojekt SS 2020]
	Abschlussbericht zum Masterprojekt SS 2020
	Inhalt
	Abstract
	Uebersicht / Inbetriebnahme
	Deconcentrator-JS
	Database

	database
	Table of Content
	Motivation
	Requirements
	Functional
	Non Functional

	User Stories
	Use Cases
	Klassendiagramm User
	Technologies
	Integration
	Sequenzdiagramm mit angesteuertem Service
	Sequenzdiagramm nur Datenbank betreffend

	Nächsten Schritte
	Getting Started
	Windows

	API
	Request all Users
	Response
	Error

	Request User
	Reponse
	Error

	Add / Change Detail
	Request Body
	Reponse

	Delete all Details
	Reponse

	Delete Detail
	Reponse

	Database Microservice
	RASA Trainieren
	Cache

	cache
	Motivation
	Requirements
	Functional
	Non Functional

	User Stories
	Use Cases
	Technologies
	Integration
	Resultate
	Update Wetter Microservice
	Geoservice Erweiterung des Wetter Microservices

	Geo Service
	Motivation
	Requirements
	Technologies
	Integration
	Further Reading

