ﬁ datenschutz-maximum Version 23.07.2020 01:47, Seite 1/ 6

Abschlussbericht zum Masterprojekt SS 2020

Inhalt
1. Inhalt
2. Abstract
3. Uebersicht / Inbetriebnahme
4. Deconcentrator-)S
5. Database
6. Database Microservice
7. RASA Trainieren
8. Cache
9. Update Wetter Microservice

Abstract

Uebersicht / Inbetriebnahme

Deconcentrator-JS

Der Deconcentrator-JS Ubernimmt die gleiche Aufgabe wie der Deconcentrator und ersetzt diesen. Die
Entscheidung den Deconcentrator auszutauschen kam daher, dass es uns am Anfang des Semester
nicht méglich war, den Deconcentrator aus dem vorherigen Semester in Betrieb zu nehmen. Auch
nach langer Beschaftigung und der Hilfe eines Studenten aus dem letzten Semester blieben Erfolge
aus. Da dieses Projekt noch weiter entwickelt werden und somit ein einfacher Einstieg und eine
Uberschaubare Komplexitat gewahrleistet werden soll, erschien es uns also sinnvoll den
Deconcentrator durch den neuen Deconcentrator-JS auszutauschen. Ein weiterer Faktor bestand
darin, dass der alte Deconcentrator in Python geschrieben war. Eine Vorgabe des Projekts ist aber die
Verwendung der Programmiersprache JavaScript. Mehr Informationen Uber den Deconcentrator-JS
befinden sich hier im Wiki. Das Projekt kann unter dem Link
https://github.com/beuthbot/deconcentrator-js angeschaut werden.

Database

Database Microservice

RASA Trainieren

Neue Funktionen oder Microservices mussen dem BeuthBot ,beigebracht” werden. Konkret flr Rasa
heilt das, dass es neue Trainings-Daten braucht aus denen das Model generiert werden kann. Dieses
Model nutzt Rasa zur Laufzeit um Anfragen zu interpretieren. Am Anfang des Semesters haben wir
bereits ein funktionierendes Model und die dazugehdrigen Trainings-Daten vorgefunden. Die
Trainings-Daten wurde mit Hilfe von Tracy generiert. Tracy wird mit einem Web-Interface bedient.

https://wiki.ziemers.de/wiki/software/beuthbot/berichte/ss2020/abschluss?rev=1595461665 Gedruckt 01.02.2026 10:50

https://github.com/beuthbot/deconcentrator-js
https://github.com/beuthbot/deconcentrator
https://wiki.ziemers.de/wiki/software/beuthbot/deconcentrator-js
https://github.com/beuthbot/deconcentrator-js
https://github.com/YuukanOO/tracy

Abschlussbericht zum Masterprojekt SS 2020

Man kann dort Satze und Entities eingeben aus denen sich Trainings-Daten generieren lassen welche
dann exportiert werden kdonnen. Die Daten wurden damals manuell eingegeben. Als wir das Model
erweitern wollten, hatten wir diese Daten wieder manuell eingeben und erganzen mussen. Da dies
nicht praktikabel erschien haben wir nach alternativen Lésungen gesucht und eine gefunden. Chatito
ist ein Tool mit dem wie bei Tracy Trainings-Daten generiert werden konnen. Der Unterschied ist das
bei Chatito die Daten nicht manuell Gber ein Web-Interface eingeben werden, sondern mit einer DSL
(Domain Specific Language) in *.chatito-Dateien definiert werden. Chatito generiert dann aus einer
beliebigen Anzahl gegebener .chatito-Dateien die Trainings-Daten welche dann von Rasa genutzt
werden kénnen um das Model zu erstellen. Die Chatito Dateien liegen im Rasa Projekt im Ordner
[/training/app/input.

Eine Anleitung zum Trainieren eines neuen Models ist hier in diesem Wiki. Die gleiche Anleitung und

mehr Informationen befinden sich in der TRAINING.md Datei des Rasa Projektes.

Cache

cache

Motivation

Der Cache soll vorrangig die Microservices entlasten, indem er die Response zwischenspeichert und
der Registry fur eine gewisse Zeit zur Verfugung stellt. Insbesondere der Service Weather ist davon
betroffen, da dieser eine APl von OpenWeatherMap nutzt, welches pro Tag 4000 Wettervorhersagen
treffen kann, sonst wird dieser Kostenpflichtig bzw. kann dann keine Requests mehr entgegen
nehmen.

Free Startup Developer Professional Enterprise
40 USD / month 180 USD / month 470 USD / month 2.000 USD / month

60 calls/minute 600 calls/minute 3,000 30,000 calls/minute 200,000

1,000,000 10,000,000 calls/minute 1,000,000,000 calls/minute

calls/month calls/month 100,000,000 calls/month 5,000,000,000
calls/month calls/month

Current Weather Current Weather Current Weather Current Weather Current Weather

Minute Forecast 1 Minute Forecast 1 Minute Forecast 1 Minute Forecast 1 Minute forecast 1

hoursk hour* x hour hour hour

Hourly Forecast 2 Hourly Forecast 2 Hourly Forecast 4 Hourly Forecast 4 Hourly Forecast 4

days* days* x days days days

Daily Forecast 7 Daily Forecast 16 Daily Forecast 16 Daily Forecast 16 Daily Forecast 16

days* days days days days

Historical Historical Historical weather Historical weather 5 Historical weather 5

weather 5 daysx weather 5 5 days days days

Climatic Forecast 30 days* % Climatic Forecast Climatic Forecast 30 Climatic Forecast 30

days Climatic Forecast 30 30 days days days

Bulk Download days Bulk Download Bulk Download Bulk Download

Bulk Download

Seite 2 /6

https://github.com/rodrigopivi/Chatito
https://wiki.ziemers.de/wiki/software/beuthbot/rasa/training
https://github.com/beuthbot/rasa/blob/master/.documentation/TRAINING.md
https://openweathermap.org/price
https://openweathermap.org/api/weather-map-2
https://openweathermap.org/api/one-call-api
https://openweathermap.org/api/one-call-api
https://openweathermap.org/api/one-call-api
https://openweathermap.org/api/one-call-api
https://openweathermap.org/api/one-call-api
https://openweathermap.org/api/one-call-api
https://openweathermap.org/api/one-call-api#history
https://openweathermap.org/api/one-call-api#history
https://openweathermap.org/api/forecast30
https://openweathermap.org/api/forecast30
https://openweathermap.org/bulk

Abschlussbericht zum Masterprojekt SS 2020

Basic weather
maps

Historical maps
Weather triggers
Weather widgets

Uptime 95%

Basic weather
maps
Historical maps

Weather triggers Weather triggers

Weather widgets Weather widgets

Uptime 95%

Advanced weather Advanced weather

maps
Historical maps

Uptime 99.5%

* - 1,000 API calls per day by using One Call API
%% - 2,000 API calls per day by using One Call API

Requirements

maps
Historical maps

Weather triggers
Weather widgets

Uptime 99.5%

Advanced weather
maps

Historical maps
Weather triggers
Weather widgets

Uptime 99.9%

Die Registry soll Requests von dem Deconcentrator entgegennehmen und Uberprifen, ob diese
Request innerhalb einer fest definierten Zeit bereits eine Response erhalten hat. Ist dies der Fall guckt
die Registry in den Cache, um sich die dort Zwischengespeicherte Response zu holen und diese an
den Sender der Request zu leiten. Dabei “ersetzt” der Cache den angesprochenen Microservice. Ist
dies allerdings nicht der Fall wendet sich die Registry weiter an den angesprochenen Microservice und
speichert dessen Response in den Cache.

Functional

e /CAF100/ The system must check if the requested resource is available in the cache before
relaying the request to a microservice.
e /CAF100/ The system must place the response of a microservice in the cache.

e /CAF200/ The cache must offer an option to save a response of a microservice.

e /CAF201/ The cache must offer an option to retrieve a saved response.

e /CAF202/ The cache must automatically delete a saved response if the given timeout has been

exceeded.

Non Functional

e /CANF100/ The system must answer faster with a cached response than if a request is relayed
to a microservice.

e /CANF200/ The cache must save at least 1000 Responses.
e /CANF201/ The cache must answer in at least 5ms.

User Stories

e /CAUS100/ Als Betreiber mochte ich Anfragen die das selbe Ergebnis erzeugen abfangen und
damit die Microservices entlasten.
e /CAUS101/ Als Betreiber mdchte ich die Anfragen an die verschiedenen APIs reduzieren um
nicht in ein teureres Preispaket zu fallen.

Seite 3/6

https://ds-maximum.de

https://openweathermap.org/api/weathermaps
https://openweathermap.org/api/weathermaps
https://openweathermap.org/api/weather-map-2
https://openweathermap.org/api/weather-map-2
https://openweathermap.org/api/weather-map-2
https://openweathermap.org/triggers
https://openweathermap.org/widgets-constructor

Abschlussbericht zum Masterprojekt SS 2020

Use Cases

Technologies

FUr Node.js existieren mehrere Caching Losungen. Bei den ersten recherchen fielen die npm packages
“memory-cache” und “node-cache” auf. Da “memory-cache” seit drei Jahren kein Update bekommen
hat, haben wir uns letzten endes fur “node-cache” entschieden.

“node-cache” ist eine simple Caching Lésung, die nach dem Key-Value prinzip funktioniert. Der
Funktionsumfang besteht dabei aus den Methoden “set”, “get” und “delete”, wobei die Methode “set”
einem zusatzlich erlaubt noch einen Timeout (“ttl” bzw. “time to live” genannt) zu Ubergeben. Ist der
Timeout Uberschritten, wird der Eintrag automatisch aus dem Cache geldscht. Der Nachteil dieser
Losung ist, dass nur eine Millionen eintrage pro Cache Instanz eingetragen werden kdnnen. Da aber
gleich viel in den Cache eingetragen wird, wie die Anzahl angebotener Funktionen aller Microservices,
wird dieser Nachteil nicht eintreffen.

Integration

Der Cache wird wie schon in Technologies beschrieben in Node.js verwendet. Spezifisch wird der
Cache dem ,registry“ Server hinzugefugt.

Das Resultat (veranschaulicht im folgenden UML diagram) besteht darin, dass registry versucht die
angefragte Ressource aus dem Cache zu holen und gegebenfalls eine Anfrage an den entsprechenden
Microservice zu stellen, falls die Ressource nicht im Cache vorhanden ist.

registry internal

gateway registry cache || Microservices
| |
|
|
|
|
|

———— |

|
| Intention Request \1

>

Cache Lookup

Cache Response u
<

[
|
|
|
|
|
|
|
|
|
alt / [requested resource is not in cache]
| |
|

Service Request !

Final Response
<

|

|

|

|

|

|

|

|

|

|

:

| |
w Service Response | U
[[geeessscceccsoooositosoaasssey Fe==m=- SRR EEEEE
| |
| |
|

|

|

|

|

|

|

|

=
®
=k
(%]
ol
o
<
(@]
()
(@]
O
)
——— |

8 microservices

Seite 4 /6

Abschlussbericht zum Masterprojekt SS 2020

Resultate

Die momentane Implementierung ist wie zuvor beschrieben umgesetzt. Der einzige Unterschied
besteht darin, dass die Microservices die Moglichkeit besitzen, einen ttl mitzuschicken. Wird kein ttl
vom Microservice mitgeschickt, so wird ein Standard ttl (momentan 30 Minuten) verwendet.

Wenn ein Microservice einen ttl mitschicken mochte, so muss dem ,,answer” Object lediglich ein
integer namens ,ttl“ hinzugeflgt werden. Dieser reprasentiert die Anzahl an Sekunden, wie lang
zwischengespeichert werden soll.

Update Wetter Microservice

Geoservice Erweiterung des Wetter Microservices

Geo Service

Motivation

Die OpenWeatherMap API akzeptiert nur Koordinaten (sprich Longitude & Latitude). Daher muss die
von Rasa Ubergebene Entity namens ,city” in Koordinaten umgewandelt werden. Urspringlich wollten
wir Rasa um diese Funktion erweitern, aus verschiedenen Grunden haben wir uns letztenendes dafur
entschieden, die Umwandlung im Wetterservice durchzufuhren.

Requirements

Der Wetterservice soll um einen Service erweitert werden, der die ,,city” Entity von Rasa in
Koordinaten umwandelt. Ist keine ,,city” Entity vorhanden, soll der Wohnort des Users (,,home” Wert
aus der Datenbank) verwendet werden. Falls weder Entity noch Wohnort vorhanden ist, soll ,,Berlin“
als Standardwert genutzt werden. Um diesen Wert umzuwandeln muss der Service dann diesen Wert
an die Nominatim API von OpenStreetMap schicken und soll danach die Response auswerten. Erhalt
der Service ein leeres Array (sprich keine Koordinaten) oder einen Fehler, so soll eine Fehlermeldung
zurickgegeben werden.

Technologies

Um einen String in Koordinaten umzuwandeln, existieren mehrere Losungen. Bei den Recherchen
stachen vorallem ,Maps” von Google und ,Nominatim“ von OpenStreetMaps hervor. Im Endeffekt
haben wir uns fur Nominatim entschieden, da diese eine Open-Source Alternative zu Maps darstellt,
durch die Offenheit einen niedrigschwelligen Einstieg gewahrt und damit ein unkompliziertes Nutzen
der APl ermdglicht. Des weiteren bietet Nominatim zusatzlich einen Docker Container an und kann
damit auch Lokal benutzt werden.

“Nominatim” ist eine Geocoding Losung, mit der man einen beliebigen String in Koordinaten
umwandeln kann. Der String kann dabei zum Beispiel aus einem Stadtnamen oder einem

Seite 5/6 https://ds-maximum.de

Abschlussbericht zum Masterprojekt SS 2020

Firmennamen bestehen. Der Service sucht anhand des Strings alle relevanten Koordinaten aus deren
Datenbank und gibt diese in einem Response zurlck. Des weiteren, kann in der Anfrage bestimmt
werden, in welchem Datenformat die Koordinaten verpackt werden sollen. Wenn anhand des Strings
keine Eintrage in der Datenbank gefunden wurden, Ubergibt die API ein leeres Array.

Integration

Wie schon in Motivation beschrieben, wird der Wetterservice Server um den Geoservice erweitert.

Das Resultat (veranschaulicht im folgenden UML diagram) besteht darin, dass der Wetterservice
einen String an die Nominatim API schickt und den Response auswertet.

weather-service internal

‘ registry ‘ ‘ weather-service ‘ ‘ geo-service ‘ ‘ Nominatim API

| | |
' Initial Request i
> |
|
|

Coordinates Call

|
|
|
|
|
> |
|
|

API Lookup

|
Coordinates Result |
! |

i ' i i
i _ Final Response I_J \ i
- -------- - - R [[

| |

‘ registry ‘ ‘ weather-service ‘ ‘ geo-service ‘ ‘ Nominatim API

Further Reading

- Nominatim API

Nutzungshinweis: Auf dieses vorliegende Schulungs- oder Beratungsdokument (ggf.) erlangt der
Mandant vertragsgemalS ein nicht ausschliel8liches, dauerhaftes, unbeschranktes, unwiderrufliches
und nicht Ubertragbares Nutzungsrecht. Eine hieriber hinausgehende, nicht zuvor durch
datenschutz-maximum bewilligte Nutzung ist verboten und wird urheberrechtlich verfolgt.

Seite 6/ 6

https://nominatim.org/

	[Abschlussbericht zum Masterprojekt SS 2020]
	Abschlussbericht zum Masterprojekt SS 2020
	Inhalt
	Abstract
	Uebersicht / Inbetriebnahme
	Deconcentrator-JS
	Database
	Database Microservice
	RASA Trainieren
	Cache

	cache
	Motivation
	Requirements
	Functional
	Non Functional

	User Stories
	Use Cases
	Technologies
	Integration
	Resultate
	Update Wetter Microservice
	Geoservice Erweiterung des Wetter Microservices

	Geo Service
	Motivation
	Requirements
	Technologies
	Integration
	Further Reading

